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Abstract: We present the electronic and vibrational studies on Si136-xGex (x = 8, 32, 40, 104) alloys,
using the local density approximation (LDA) scheme. We find that a “nearly-direct” band gap
exists in the band structure of Si104Ge32 and Si96Ge40, when compared with the similarly reported
results obtained using a different computational code. The calculated electronic density of state
(EDOS) profiles for the valence band remain nearly identical and independent of the Ge concentration
(x = 32, 40, 104) even though some variation is found in the lower conduction band (tail part) as
composition x is tuned from 8 (or 40) to 104. The negative thermal expansion (NTE) phenomenon is
explored using quasi-harmonic approximation (QHA), which takes the volume dependence of the
vibrational mode frequencies into consideration, while neglecting the temperature effect on phonon
anharmonicity. Determined macroscopic Grüneisen parameter trends show negative values in the
low temperature regime (1 K < T < 115 K), indicating the NTE behavior found in Si128Ge8 is analogous
to the experimental result for Si136. Meanwhile, calculations for the ratio of the vibrational entropy
change to the volume change at several characteristic temperatures reconfirm the existence of NTE in
Si128Ge8 and Si104Ge32.

Keywords: electronic density of states; phonon anharmonicity; macroscopic Grüneisen parameter;
free energy; vibrational entropy

1. Introduction

Empty alloy clathrates are a class of materials with either a crystalline or an amorphous framework
comprising more than one Group IV element (e.g., Si, Ge, and Sn). These open-framework compounds
are constructed from bonding configurations and exhibit sp3 hybridized geometry. The two primary
structures of these materials are similar to Type-I and Type-II clathrate hydrates [1] for which the
unit cells are coordinated by polyhedral cavities that can encapsulate guest atoms. Specifically,
there are 46 atoms in a Type-I primitive unit cell and 136 framework atoms in a Type-II enlarged
unit cell that consists of the building blocks of the 28-atom and 20-atom (or 24-atom) polyhedra.
The present work focuses on the Type-II Si136-xGex (0 < x < 136) SiGe solid solution alloy comprising
20-atom (dodecahedron) cages and 28-atom (hexakeidacahedron) cages connected in the ratio of 4:2.
Some understanding of the Type-II SiGe clathrate solid solution has been obtained by experimental
and theoretical studies during the past two decades. Specifically, in previous work, Baranowski et al.
classified the phase structures of the synthesized Si136-xGex into two categories based on the synthesized
Ge content x as follows [2]. The stoichiometric amount (x) of Ge for amorphous formation ranges from
approximately 20.4 to 68, while the concentration values corresponding to crystalline Si136-xGex satisfy
0 < x < 20.4 and 68 < x < 136. Our theoretical work on electronic and vibrational properties of Si136-xGex
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is based on the assumption that all of these alloy clathrates with the assigned composition are found in
the crystalline phase. Using the Cambridge sequential total energy package (CASTEP) package [3],
K. Moriguchi et al. investigated the electronic properties of Si136-xGex, for which the nearly-direct and
direct wide band gaps were found to range from 1.2 to 2.0 eV for x = 8, 32, 40, 96, 104, and 128 [4].
The electronic density of state profiles that were calculated using the Vienna ab initio simulation
package (VASP) code show the existence of band gaps with values that are compared with the results
of Koji et al. for x = 8, 40, and 104.

Recently, anomalous negative thermal expansion (NTE) behavior in silicon-based clathrate has
attracted increasing research interest [5,6]. For example, Tang et al. investigated the thermal properties
of Si136 and reported an NTE region exists between in the 10–140 K temperature range in such a
pure framework [7]. Negative thermal expansion is defined as a phenomenon where the material
contracts rather than expands with an increase in the temperature. Prior to the work of Tang et al.
on pure Si136, NTE in diamond phase alloy Si1-xGex was discussed for x = 0 [8–12], while Si1-xGex

(x = 1) was found to demonstrate relatively weak NTE for temperatures lower than approximately
40 K [13]. Thus, the motivation for much of our work has been the first-principles prediction of NTE
behavior appearing in the Si136-xGex clathrate alloy with silicon as the dominant component. In this
paper, we mainly report the results for the volume(V)-dependent vibrational entropy and free energy
of pure Si136, and the results for the dispersion relationships and macroscopic Grüneisen parameters of
Si136-xGex (x = 0, 8, 32).

To the best of our knowledge, while some computational studies have been reported in the
literature [14–18] on the vibrational properties of Type-I and Type-II clathrate materials using
density-functional-theory-based techniques within the harmonic approximation (HA), there has
been no discussion of the anharmonic effects associated with clathrate materials’ lattice dynamics.
To effectively explore anharmonic properties such as the NTE behavior found in Si136-xGex, we present
two approaches for probing this anomalous thermal performance that rely on the quasi-harmonic
approximation (QHA) formalism [19]. Essentially, the core of the QHA scheme lies solely in the
volume-dependence of the phonon anharmonicity, whereas the temperature is assumed to remain
independent of the phonon dispersion spectrum. It is well-known that the VASP code always evaluates
the lattice (phonon) dispersion spectrum by determining the force-constant matrix D(q) within the HA
scheme and at T = 0. On the basis of the thus-derived phonon mode frequency ωj(q) derived from D(q),
the predicted NTE behavior is mathematically manifested by the negative thermal expansion coefficient
that corresponds to the negative weighted average of the mode Grüneisen parameter γj (defined as
–Inωj(q)/InV) in the certain temperature range. The subscript j here denotes the phonon branch.

In addition to the macroscopic Grüneisen parameter γ(T) obtained from the weighted average
of γj, the volume derivative of the vibrational entropy Svib is another thermodynamic quantity used
for examining NTE behavior. This approach for predicting NTE is effective due to two factors. First,
the NTE coefficient scales linearly with the volume derivative of the vibrational entropy (written
as @Svib/@V). The second reason is that the Si136-xGex system is supposed to be a perfect crystalline
lattice, where the temperature-dependent contribution to the entropy arising from lattice vibrations is
considered. Meanwhile, other types of anharmonic effects and electronic and magnetic contributions
are assumed to be too small and are neglected. This alternative approach for exploring NTE is
still within the QHA framework, because the @Svib/@V term contains the information regarding the
volume-dependence of the HA-based phonon frequency ωj(q) appearing in the vibrational entropy.
In this work, both of these two approaches were applied to verify that the Si-dominated Si128Ge8

(or Si104Ge32) alloy demonstrates the NTE effect at a temperature range that is comparable to that of
pure Si136.

2. Computational Approach

We present the results of first-principles density-functional-theory (DFT)-based study on the
electronic and vibrational properties of clathrate solid solution Si136-xGex (0 ≤ x < 136) and chose to use
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the VASP code [20]. We employed the Ceperley–Alder exchange-correlation potential along with the
pseudopotentials obtained using the projector augmented wave (PAW) method. All of the calculations
reported here are based on local density approximation (LDA) in which the self-consistent Kohn–Sham
equations [21] are solved. This implementation has been extensively and successfully examined in
a wide range of material systems [22–24] and appears to be highly efficient for the large clathrate
unit cells involved in this work, namely, the Si- and Ge-containing Type-I, II, VIII compounds [25–27].
The energy cutoff parameter was set to be 300 eV for Si136-xGex, in the context of performing electronic
property calculation.

In all cases, geometry optimization is the initial task of our computations and is performed after
selecting a fixed lattice constant and relaxing the internal coordinates by means of the conjugate gradient
(CG) algorithm. Next, several pairs of the obtained data describing the LDA energy vs. volume were
fitted to the third-order Birch–Murnaghan equation of state (EOS) [28], obtaining an energy–volume
relationship. Moreover, on the basis of this fitting procedure, equilibrium state parameters including
the minimum binding energy and lattice parameter can be determined. We perform Brillouin zone
integration using a 4 × 4 × 4 Monkhorst-Pack k-point grid [29] in order to perform the relaxation and
ultimately to characterize the equilibrium geometry. The total energy convergence criterion was set
to 10−7 eV. In this paper, we discuss the electronic band structure (BS) with respect to Si128Ge8 and
evaluate the density of states at the minimized energy configurations of Si136-xGex (x = 8, 40, 104).

To investigate the lattice dynamics of these SiGe clathrate solid solution compounds, 2 × 2 × 2
Monkhorst-Pack k-point sampling was applied to obtain the Γ-point vibration modes and the dispersive
relationships were derived from the dynamical matrix D(q). Here, q acts as the phonon wave vector in
the first Brillouin zone (BZ). The determination of D(q) was carried out in two steps. The first step was
to obtain the 3N × 3N matrix in terms of the exact HA for q = (0,0,0) (Γ-point), where N denotes the
total number of atoms in the optimized primitive unit cell. To do this, each atom in the polyhedron
cage is moved by a small finite displacement U0 (= 0.02 Å) from equilibrium. The second step is to
approximately obtain the 3N × 3N matrix D(q) (q , (0,0,0)) for q confined within the vicinity of Γ-point.
The details of this computational procedure were reported in a previous paper [30]. After collecting
the entire D(q), we diagonalize this matrix and determine the vibrational mode eigenvalues ωj

2(q)
(squared frequencies) and the eigenvectors.

In the same HA, we calculated the vibrational entropy from the vibrational free energy which
is originally determined from the vibrational mode frequencies ωj

2(q). Using the quasi-harmonic
approximation, the volume dependence of the vibrational entropy at various characteristic temperatures
was evaluated. Similarly, another thermodynamic property describing phonon anharmonicity was
obtained from the inspection of the volume dependence of the vibrational frequenciesωj(q). Specifically,
the original definition of microscopic Grüneisen parameter γi(q) = –Inωj(q)/InV can be approximated
as the negative ratio of the fractional change in the mode frequency ∆ωj(q)/ωj(q) to the fractional
change in volume ∆V/V using the Feynman–Hellmann theorem [31] based on the finite difference
method (FDM). To do this, phonon anharmonicity calculations for determining γi(q) were repeated at
three volume points consisting of one equilibrium volume and two additional volume values that are
slightly larger and smaller, respectively. Moreover, the volume derivative of the dynamical matrix
elements (Dij(q)) was approximated as ∆Dij(q)/∆V.

3. Results and Discussion

3.1. Electronic Properties

Before discussing the exact results of electronic and vibrational properties, it should be mentioned
that the SiGe alloy models used in this work were Si128Ge8, Si104Ge32, Si96Ge40, and Si32Ge104, assuming
full occupation on the 8a, 32e, 8a + 32e, and 8a + 96g Wyckoff sites by Ge. It is necessary to display
the microscopic structure of Si104Ge32 which is based on the 136-atom unit cell. As is shown in
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Figure 1, our determined lattice constant a is about equal to 1.467 nm which lies in the size range of 1
to 1000 nanometers, satisfactory with the definition of nanomaterial [32].Nanomaterials 2019, 9, x 4 of 18 
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in optoelectronic semiconductor devices. Figure 2 demonstrates the electronic band structure 
calculated by us using VASP for Si128Ge8 that has a structural symmetry specified by the Fd-3m space 
group [37]. It is clearly observed that the top of the valence band is found at the L high-symmetry 
point. The depicted band structure shown in the energy range of 0 and 2 eV enables Si136-xGex (x = 32, 
40) to exhibit the so-called “nearly-direct” band gap because the eigenenergy of the conduction band 
edge at L is slightly higher than the eigenenergy of the conduction band edge at the Γ point. In other 
words, the degeneracy of the lowest conduction band at the L and Γ points is not noticeably different. 
Our predicted results for the band gap magnitude (~1.23 eV in Si104Ge32; ~1.27 eV in Si96Ge40) and 
“nearly-direct” behavior are compared with the first-principles result (~1.22 eV and ~1.25 eV) of Koji 
et al. [4] for Si104Ge32 and Si96Ge40, in which the CASTEP code was utilized to perform their calculations.  

Figure 1. Cubic unit cell of Si104Ge32. The yellow solid balls denote the Si atoms while the purple solid
ones represent the Ge atoms that act as substitutional framework hosts.

Many reports [33–35] have shown that some Si semiconductor clathrates have wider energy band
gap than that of the pristine cubic diamond silicon (cd-Si) that has the band gap of 1.17 eV [36]. Based on
these reports, the evaluation of the electronic band gap of Si136-xGex with the specified Ge concentration
may provide guidance for the search for promising candidate materials for application in optoelectronic
semiconductor devices. Figure 2 demonstrates the electronic band structure calculated by us using
VASP for Si128Ge8 that has a structural symmetry specified by the Fd-3m space group [37]. It is clearly
observed that the top of the valence band is found at the L high-symmetry point. The depicted band
structure shown in the energy range of 0 and 2 eV enables Si136-xGex (x = 32, 40) to exhibit the so-called
“nearly-direct” band gap because the eigenenergy of the conduction band edge at L is slightly higher
than the eigenenergy of the conduction band edge at the Γ point. In other words, the degeneracy of the
lowest conduction band at the L and Γ points is not noticeably different. Our predicted results for
the band gap magnitude (~1.23 eV in Si104Ge32; ~1.27 eV in Si96Ge40) and “nearly-direct” behavior
are compared with the first-principles result (~1.22 eV and ~1.25 eV) of Koji et al. [4] for Si104Ge32 and
Si96Ge40, in which the CASTEP code was utilized to perform their calculations.
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Figure 2. Local density approximation (LDA)-determined electronic band structures of Si104Ge32 and
Si96Ge40, where the zero of energy is set to be the valence band maximum at the L point.

Ground state computation at T = 0 can facilitate a comprehensive study for determining the
material’s electronic properties such as the LDA-derived electronic density of states (EDOS). Considering
Ge-containing silicon clathrate Si136-xGex with the compositions x = 8, 40, 104, the empty framework
of these alloys without encapsulated guest behaves structurally as the four-fold-coordinated sp3

configuration, while all of the valence electrons of Group IV atoms follow the Zintl–Klemm concept to
form covalent bonds [38]. Accordingly, no charge transfer occurs in Si136-xGex (x = 8, 40, 104) because
all valence electrons are used to build the charge-balanced composition, enabling the material to be
a semiconductor and to play a promising role in thermoelectric applications. Figure 3 shows the
results of our DFT calculations for examining the EDOS as a function of the specified Ge composition,
assuming that three inequivalent sites (8a, 32e, 96g) of unit cell geometry are completely filled by
the same Group IV element instead of the mixture of Si and Ge. An examination of Figure 3 shows
that there are no major differences between EDOS profiles of Si128Ge8 and Si96Ge40. However, it is
observed that the lower region of the conduction band in the EDOS profile of Ge-dominant alloy
Si32Ge104 is “downshifted”, leading to a reduced optical band gap (~0.83 eV) in comparison with the
other materials (1.27–1.39 eV). Additionally, the EDOS profile of Si32Ge104 for the conduction band
region has a different tail region located between approximately 0.8 eV and 1.6 eV, indicating that the
energy states surrounding the minimum energy (at approximately 1.15 eV) are becoming sparsely
populated. Generally, the electronic densities of states of Si136-xGex (x = 8, 40, 104) are sensitive to
the apparent change in the Ge concentration. Specifically, the change from the Si-dominant Si128Ge8

alloy, to Si96Ge40 and then to the Ge-dominant Si32Ge104 alloy is accompanied by a variation in the
conduction band profile occurring at the lower region and a reduction in the optical band gap.

It should be mentioned that, the LDA band structure calculation underestimates the band gap [39].
We see that, adding substitutional Ge atoms (from 8 to 40 to 104) to the framework slightly modifies the
band structure (see Figure 4). Increasing the substitutional Ge atoms modifies several states near the
valence band maxima and conduction band minima, thus reducing the band gap. In all of the below
structures, the smallest energy gap lies along the L to the Γ line. We consequently conclude that these
compounds have “nearly-direct” band gaps because the eigenenergy at the L point is always slightly
higher than that of the Γ point. In addition to these, each electronic density of states (EDOS) in Figure 3
shows three major regions, which can be connected to an s-region, an sp hybrid-region and a p-region.
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It is known that, the appearance of the gap in the valence band region is due to the five-ring patterns of
the Ge or Si atoms [4,40] but there still exists some criticism about this statement [4]. According to
ref. [41] the tetrahedrally bonded framework atoms (Si and Ge) possess small angular distortion. It is
impossible to express the valence band maximum on an absolute scale, because of the self-consistent
plane wave calculation. To this end, the EDOS in Figure 3 are qualitatively very much similar to one
another in the three alloy materials that we have investigated so far.
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3.2. NTE Behavior Investigation

The lowest-lying acoustic mode regions are of greater importance than the other regions of the
phonon spectrum due to the low-T anomalous negative thermal expansion. Consequently, we begin
with the first-principles calculations (Figure 5) of the low-frequency (0–150 cm−1) dispersion spectrum
of Si136-xGex (x = 32, 104) in the Brillouin zone. This calculated dispersion curve primarily displays the
longitudinal acoustic (LA) phonon and transverse acoustic (TA(1) and TA(2)) phonons with double
degeneracy along specific directions involving the Γ-L, Γ-X, and Γ-K lines. Meanwhile, Figure 5a shows
how geometry dilation affects the vibrational spectrum of Si104Ge32 in which the fractional change in
the mode frequencies of the TA(1) and TA(2) phonons increase with increasing volume (∆V/V = +6%).
By contrast, the frequency of the longitudinal phonon decreases upon structural dilation. For the
low-frequency spectrum of optimized Si32Ge104, Figure 5b shows that the phonon velocity stays
nearly unchanged.Nanomaterials 2019, 9, x 8 of 18 
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Brillouin zone, for the optimized geometry (black solid line) and dilated configuration (red dotted line).

Figure 6 shows the quantized collective motion of the lattice framework atoms responses in
Si32Ge104 and Si104Ge32 upon structural variation using the finite difference method in combination with
the Feynman–Hellmann theorem: ∆ωTA(1)(L)/ω0

TA(1)(L) = –γTA(1)(L)∆V/V, where ω0
TA(1)(L) denotes

the transverse acoustic phonon mode frequency at the L point at the optimized geometry without the
structural change and ∆ωTA(1)(L) describes the change in such mode frequency. The fractional change
in the equilibrium volume (∆V/V) is evaluated as the absolute difference between the slightly larger
volume and the slightly smaller volume and is equal to 0.04 V, 0.08 V, 0.12 V, and 0.16 V. Moreover, the
fractional change in the mode frequency of the TA(1) phonons in Si32Ge104 increases more slowly with
increasing ∆V/V in comparison with that of Si104Ge32. In the same figure, the solid and dashed lines act
as a guide for the eye, demonstrating the constant positive slope for the ratio of ∆ωTA(1)(L)/ω0

TA(1)(L)
to ∆V/V. Multiplying this ratio by −1 defines the mode Grüneisen parameter of the TA(1) phonon
localized at the L point (γTA(1)(L)). Specifically, the determined ratio of γTA(1)(L) for Si32Ge104 to γTA(1)(L)
for Si104Ge32 is approximately equal to 0.72, indicating that the lattice framework is accompanied by a
weak vibrational response with geometry variation when the Ge content is dominant.
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Numerical calculations of the mode Grüneisen parameter (γj) of the specific phonon mode using
FDM are listed in Table 1. The thus-evaluated values are obtained at the X and Γ high-symmetry points
of the dispersion curves in the [100] direction. Due to the existence of a diverging mode Grüneisen
parameter at the Γ point, the results for the γj(Γ) of the TA(1) and LA phonons are computed in the
vicinity of (0,0,0). Table 1 also shows that the transverse acoustic phonons have γj values below zero.

Table 1. Calculations of the mode Grüneisen parameters for the theoretically studied Si136-xGex (x = 8, 32).

Mode Critical Point Si128Ge8 Si104Ge32

TA(1) X −1.37 −1.23
TA(1) Γ −1.42 −1.29

LA X 0.51 0.76
LA Γ 0.94 0.90

To explore how anharmonic frequencies which are smaller than harmonic ones affect the sign of
corresponding mode Grüneisen parameter in the case of Si104Ge32, we consider this time the comparison
between the compressed structure (−6%V) and the optimized one, in the presence of dispersion relations.
Figure 7 shows the mode frequency variation confined within the low-frequency (0–150 cm−1) regime,
leading to smaller values of transverse acoustic phonon modes when paying attention to the compressed
configuration that is numerically given by −0.06 V. These anharmonic frequencies still give rise to
negative Gruneisen parameters according to ∆ωTA(q)/ω0

TA(q) = –γTA(q)∆V/V, because at this moment
∆V becomes negative in combination with negative ∆ωTA(q). On the other hand, the lowest-lying
longitudinal optic (LO) and transverse optic (TO) phonons only display positive Grüneisen parameters,
while most of the other remaining optic phonons (lying above the acoustic bands) show positive sign
with respect to γj according to our DFT-determination.

The overall Grüneisen parameter γ(T) serves as a measure of anharmonicity of lattice vibrations,
while playing an essential role in giving rise to NTE behavior. Our first-principles method utilizes the
weighted average to obtain γ(T) using the equation γ(T) =

∑
j γjCV/

∑
j CV,j. where CV,j is the partial

vibrational mode contribution to the heat capacity originating from the phonon mode frequency,
ωj(q) and its value always remains positive. Based on the data presented in Table 1, the listed transverse
acoustic phonon modes have a larger negative contribution to the macroscopic Grüneisen parameter
γ(T) while T is restricted to the low-temperature regime (below approximately 150 K). This is because
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CV,j evaluated at the low-temperature region for the TA phonons is dominant compared to the remaining
phonon contribution to the heat capacity.Nanomaterials 2019, 9, x 10 of 18 
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optimized geometry (black solid line) and compressed configuration (red dotted line).

In addition, the thermodynamic relationship αv(T) = γ(T) CVρ/KT states that the sign of the
volumetric thermal expansion coefficient αv(T) directly depends on the negative or positive sign of
γ(T) because the bulk modulus at the specified temperature KT, and the heat capacity CV along with
material’s density ρ always remain positive. Briefly, negative thermal expansion is indicated by the
negative sign of γ(T). Our calculated γ(T) profile for Si136-xGex (x = 8, 32) is presented in Figure 8,
whereas T is limited to the range of 1–122 K. It is observed that the macroscopic Grüneisen parameters
of Si128Ge8 are always negative in the 1–108 K range, while Si104Ge32 have similar temperature profiles
showing negative γ(T) region spanning the range of 1–84 K.
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In the harmonic approximation, the vibrational contribution to the free energy is
temperature-dependent and is given by Fvib = kBT

∑
q
∑

jIn{2sinh(hωj(q)/4πkBT)}, where kB is Boltzmann’s
constant and h is Planck’s constant. The vibrational free energy (Figure 9), including zero-point
eigenmodes for Si136 obtained by us using the HA method with the VASP code, is consistent with the
results reported by Miranda et al. [42]. They determined the Gibbs free energy at zero pressure (P = 0),
which is equivalent to the vibrational free energy Fvib because the PV term vanishes. Moreover, below
we show such a thermodynamic feature that lies within the low-temperature regime in the temperature
range from 10 K to 400 K. Our results for Fvib show that the Fvib values decrease from 0.06 eV/atom at
T = 10 K to approximately 0.01 eV/atom at T = 400 K.
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In the same approximation, the vibrational entropy derived from the vibrational free energy
at constant volume is given by Svib = −(@Fvib/@T)V. Based on the original definition for the
volumetric thermal expansion coefficient (VCTE) αV = V−1(@V/@T)P and the Maxwell relationship
(@P/@T)V = (@Svib/@V)T, we find that the VCTE is proportional to the sums of the mode contributions
to the vibrational entropy as given by αV = (1/B)[@

∑
q,jSj(ωj(q))/@V] [43]. Here, B is the bulk modulus.

Our first-principles calculations determine the macroscopic vibrational entropy Svib that replaces∑
q,jSj(ωj(q)). A similar approach has been outlined in references [5,44]. It is known that the wave

vector sampling of this procedure spans over 255 points within the Brillouin zone for q-integration.
More reliable predictions are obtained when finer q-point grids are used. Based on the finite difference
method, the volume derivative with respect to the vibrational entropy Svib is approximated as ∆Svib/∆V.
Consequently, this provides an alternative way for exploring anomalous NTE through the change in
the vibrational entropy (∆Svib) with respect to the change in volume (∆V) at the specified temperature.
A positive ∆Svib/∆V gives rise to a positive thermal expansion coefficient. Accordingly, we calculated
Svib for a small number of designated atomic volumes at several characteristic temperatures, as shown
below. To better illustrate the effect of the volume change on the vibrational entropy, our plotted Svib

vs. V are shown using expanded unit cells that are 1%, 2%, 3% larger than the optimized geometry and
the contracted unit cells that are 1%, 2%, 3% smaller than the equilibrium volume. The solid line acts
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as a guideline for determining the ∆Svib/∆V ratio for each small line segment when connecting these
discrete data points in a smoothly continuous manner, leading to a qualitatively reasonable estimation
of VCTE. Figure 10 shows the predicted vibrational entropy of Si128Ge8, at T = 40 K, 80 K, 130 K in
terms of volume per atom. The increasing behavior of Svib is observed in Figure 10c, whereas T = 130 K
is slightly smaller than the upper limit of the NTE temperature range found for Si136 (~140 K) [7].
The negative slopes for each small line segment appearing in Figure 10a,b are indicative of NTE
behavior at T = 40 K and T = 80 K. In other words, the lattice framework of Si128Ge8 contracts upon
heating from lower temperatures.
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To revisit the NTE behavior by focusing on the so-called entropy-driven effect [8], the Ge
concentration x in Si136-xGex was raised from 8 to 32. Figure 11 shows a series of plots of predicted
volume-dependent Svib at different temperatures for Si104Ge32. From these continuous curves, the slopes
of the vibrational entropy as a function of lattice volume for each line segment are found to be negative
at T = 40 K and T = 60 K, respectively, while remaining positive at T = 120 K. Therefore, the NTE
phenomenon is found to be present at T = 40 K (and T = 60 K) but vanishes at T = 120 K. It is therefore
anticipated that the slopes change their sign from negative to positive at some finite temperature
between T = 60 K and T = 120 K, beyond which the disappearance of the NTE phenomenon is expected.
The previously predicted NTE temperature range (0—84 K) for Si104Ge32 appearing in Figure 8 indicates
that the NTE effect begins to disappear at approximately 87 K which is nearly at the midpoint of
the 60–120 K range displayed in Figure 11b,c. Similarly, for the Si128Ge8 alloy, quantities involving
∆Svib/∆V switch their sign from negative to positive when the temperature is increased from 80 K
to 130 K. Additionally, in Figure 8 the upper limit for the existence of NTE is approximately 108 K,
similar to the average of T = 80 K and T = 130 K specified in Figure 10a,b. Finally, both of these two
approaches utilizing the quasi-harmonic approximation method give rise to a substantially consistent
result when predicting anomalous negative thermal expansion behavior at specified temperatures, and
specify the approximate T range within which the NTE is present.
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4. Conclusions

In conclusion, we theoretically investigated the electronic and vibrational properties of the
Si136-xGex (0 ≤ x < 136) alloy clathrate solid solution by combining ab initio DFT lattice dynamics with
QHA. The computational results for the optical band gap of Si136-xGex (x = 8, 40, 104) observed in the
EDOS profiles were compared with the values obtained by other researchers using the CASTEP code
instead of VASP. Furthermore, the EDOS profiles for the valence band stayed almost unchanged as the
Ge composition x was tuned from 8 to 40 to 104. However, a somewhat apparent variation in EDOS
was found in the lower region of the conduction band when the Ge content was dominant. Based
on the QHA formalism, two different approaches were applied to predict the occurrence of negative
thermal expansion in the 1 K < T < 85 K low-temperature range for Si128Ge8 and in the 1 K < T < 115 K
range for Si104Ge32. Specifically, the NTE temperature range of the studied Si104Ge32 clathrate alloy was
found to be somewhat narrower than that of Si136, while Si128Ge8 has a slightly smaller temperature
region of NTE than Si136. Our predicted vibrational free energy of Si136 including the zero-point
eigenmodes is in relatively good agreement with the reported experimental value. The generated
dispersion relationships for Si104Ge32 and Si32Ge104 are quite similar for the low-frequency (<150 cm−1)
phonon spectrum, leading to nearly the same speed of sound. The obtained Grüneisen mode parameter
determined by the dependence of the mode frequency change on the volume change provides an
efficient route for evaluating the thermal expansion coefficient, which may suggest NTE behavior.
At temperatures below approximately 120 K, the lowest-lying phonons, namely, the transverse acoustic
phonons, make a larger contribution to producing a negative macroscopic Grüneisen parameter and
the subsequent NTE phenomenon than the rest of the phonons.
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