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Abstract The pristine crystalline type-I, type-II, and

type-VIII silicon clathrates have been studied using state of

the art first-principles calculations based on density func-

tional theory and density functional perturbation theory.

We apply quasi-harmonic approximation to study struc-

tural stability, the possibility of temperature or pressure-

driven phase transitions, along with Grüneisen parameters,

coefficients of thermal expansion and thermal conductivi-

ties to estimate the degree of phonon anharmonicity for

selected silicon clathrates. It is shown that a pressure-dri-

ven phase transition between type-I and type-II silicon

clathrates may occur, and a temperature-driven phase

transition between type-I and type-VIII Si clathrates at high

temperature is likely. We further show that the relatively

high Grüneisen parameters (1.5, 1.65, and 1.29, respec-

tively for Si46-I, Si136-II, Si46-VIII), the existence of neg-

ative regions in the thermal expansion coefficient curves

and very low thermal conductivities all indicate that the

phonon anharmonicity in these silicon clathrates is high.

Introduction

Silicon material systems have been studied extensively for

decades and have a broad range of technological applica-

tions. According to the phonon glass-electron crystal

concept by Slack [1] in 1995 the interest on the cage-like

silicon clathrates as promising thermoelectric (TE) mate-

rials considerably increased. The most important charac-

teristic of TE is the figure-of-merit ZT = S2rT/j (here S is

the Seebeck coefficient, T is the temperature, r is the

electrical conductivity, and j is the thermal conductivity).

However, applicability of TE materials is affected by other

material characteristics such as thermal and mechanical

properties. Therefore, having deep insight into these

physical properties of pristine silicon clathrates as parent

materials through atomistic level studies warrants a

flawless design of derivative materials for TE purposes

(Fig. 1).

Most investigation on Si clathrates to date has dedicated

on the synthesis and characterization, and transport prop-

erties. However, work on their fundamental properties such

as thermal, vibrational, elastic, and thermodynamic ones

remains restricted. Phonon anharmonicity arises from

phonon–phonon interactions and affects the thermal prop-

erties of materials. For example, it contributes to the neg-

ative thermal expansion of Si clathrates [2]. Therefore, the

concept of phonon anharmonicity has a key role in the TE

materials design.

To quantify the anharmonic interactions within a lattice,

the values of physical effects such as thermal conductivity,

coefficient of thermal expansion (CTE) and Grüneisen

parameter can be used. The CTE cannot be explained by

harmonic theory of the lattice as the phonon frequency

does not depend on the amplitude of the vibrations [3]. The

thermal resistivity requires phonon anharmonicity as har-

monic phonons would never be scattered, so a perfect

crystal would have infinite thermal conductivity in the

whole temperature range. One solution is to accept that

phonons can scatter other phonons and it occurs only if the

harmonic approximation is discarded. Moreover, if the
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lattice potential is harmonic, the phonon frequencies are

volume-independent, and the derivative of phonon fre-

quency with respect to the volume is zero at all tempera-

tures. So, the Grüneisen parameter that will be defined

later, is related to the anharmonicity of phonons. In case of

clathrates, the anomalous motion of rattler atoms residing

inside the cage can be considered as an extra reason for

phonon anharmonicity [4–6]. It has been shown that the

ionic radius of the guest atoms and the cage size crucially

affect the phonon anharmonicity and in turn the thermal

conductivity in clathrates [7, 8]. In general, quantifying the

phonon anharmonicity is a difficult task and in the present

study we use Grüneisen parameter, coefficient of thermal

expansion, and thermal conductivity to evaluate it. In this

study, we assume that the anharmonic contributions

beyond quasiharmonicity are negligible and employ quasi-

harmonic approach (QHA) for calculations.

The primary purpose of this work is to present and

discuss the phase stability, possibility of pressure or tem-

perature-driven phase transitions, and anharmonicity of

three pristine silicon clathrates Si46-I, Si136-II, and Si46-

VIII by employing a first-principles approach. We use the

density functional theory (DFT), and present the properties

calculated from dynamical properties: an analysis of pho-

non dispersions and density of states, of Grüneisen

parameters, of thermal expansion coefficients, and finally a

study of the lattice thermal conductivity of Si46-I, Si136-II,

and Si46-VIII clathrate materials utilizing Slack’s model

[9].

Theoretical background and computational
methodology

Crystal structure

Clathrates can be considered as cage-like polyhedrons

with shared faces. The guest-included clathrates built up

from a framework lattice in which encapsulates the

lattice of guest atoms. The sp3-type covalent bindings

link the atoms together. Clathrates can be doped either

by intercalation until one atom in each cage, which

corresponds to 20 % of doping, or by substituting atoms

in the framework. The type-I silicon clathrate, namely,

Si46-I, has a simple cubic lattice with 46 atoms per unit

cell and the Pm3n (Hermann–Mauguin notation) No.

223 group symmetry (see Table 1). The type-II silicon

clathrate Si46-II, has 34 atoms in its primitive unit cell

in which belongs to the face-centered-cubic (fcc) Fd3m

No. 227 symmetry space group. The type-VIII silicon

clathrate, called Si46-VIII, is a body-centered cubic

lattice with 23 atoms in its primitive unit cell and the

I43m No. 217 symmetry. Type-I clathrates consist of

dodecahedra (E20) and tetrakaidekahedra (E24) polyhe-

dral [10] while type-II clathrates form dodecahedra and

hexadecahedra (E28) [11]. Type-VIII clathrates are

comprised only one pent agonal dodecahedra [12].

Table 1 presents the symmetry and Wyckoff sites for

each clathrate structure.

Fig. 1 Schematic representation of conventional unit cells for a type-I, b type-II, and c type-VIII silicon clathrates

Table 1 Symmetry and Wyckoff positions of type-I, type-II, and type-VIII clathrates

Si46-I (Pm3n: No 223) Si136-II (Fd�3m: No 227) Si46-VIII (I I�43m 3 m: No 217)

6c x = 0.25, y = 0, z = 0.5 8a x, y, z = 0.125 2a x, y, z = 0

16i x, y, z = 0.684 32e x, y, z = 0.217 8c x, y, z = 0.384

24 k x = 0, y = 0.883, z = 0.692 96 g x, y = 0.0575, z = 0.3705 12d x = 0.25, y = 0.5, z = 0

24 g x, y = 0.585, z = 0.143
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Computational methodology

The DFT-based QUANTUM-ESPRESSO package was

employed to perform calculations [13]. The generalized

gradient approximation, through the Perdew-Burke-Ernz-

erhof parameterization [14] and norm-conserving Troul-

lier-Martins [15] pseudopotentials factorized in Kleinman–

Bylander form [16] have been used. The Brillouin zone has

been sampled by a 4 9 4 9 4 Monkhorst–Pack grid for

structural optimization [17]. The Kohn–Sham wave func-

tions are expanded using a standard plane wave basis set

with a kinetic energy cutoff of 30 Rydbergs. The structures

are relaxed until the largest force becomes less than 10-3

eV/Å and the calculations are converged to 10-7 eV/cell.

Using the linear response theory of the DFT, the dynamical

matrix, Born effective charges, and dielectric constants

were computed to calculate phonon frequencies in the

Brillouin zone [18, 19]. A 4 9 4 9 4 q grid was employed

for static properties with 6 9 6 9 6 k grid mesh, and 30

Rydbergs of energy cutoff to obtain the force constants

matrices and achieve the inverse Fourier transformation.

Thermal expansion is indirectly taken into account through

performing calculations for several lattice constant around

the equilibrium one.

The phonon calculations have been conducted using the

small displacement method as implemented in the phon

package [20]. The GGA have been used to describe the

exchange–correlation effects [14]. The projector-aug-

mented wave (PAW) potentials have been used with the

cutoff energy up to 450 eV. Integration over the Brillouin

zone was performed using a special k-points technique [17]

with 4 9 4 9 4 mesh together with Methfessel-Paxton

smearing of 0.2 eV [21]. A supercell which is a single unit

cell was used in all calculations due to the large unit cell of

selected clathrates (*10 Å).

Our approach is distinct from the similar studies [2, 22]

as they have applied the LDA method to calculate the

temperature dependency of lattice constant and CTE for

clathrates while we have utilized the GGA method.

Anharmonicity

Anharmonic effects originate from phonon–phonon inter-

actions, and these interactions arise from the cubic or

quartic terms in the phonon potential. To understand the

thermal transport properties and thermodynamic stability

of TE materials at higher temperatures, having a good

insight into anharmonic effects is essential [23]. Phonon

anharmonicity causes entropy of materials to increase at

elevated temperatures, and shorten the phonon lifetimes

which in turn leads to finite phonon mean free paths.

However, a few studies of non-harmonic effects in Si

clathrates have been reported [2, 22].

Although, anharmonicity has been studied extensively

[24] a method in which incorporates the anharmonicity in

free energy is still lacking. As explained earlier, anhar-

monicity contributes in coefficient of thermal expansion,

Grüneisen parameter, and thermal conductivity. So, to

evaluate the degree of anharmonicity in selected Si clath-

rates, we conduct first-principles calculations to obtain mode

Grüneisen parameters, CTEs, and thermal conductivity

within QHA. The anharmonicity resulted from the phonon–

phonon interaction is ignored by QHA approximation. QHA

considers the volume dependence of frequencies but

neglects the effect of temperature on frequencies. In fact, the

QHA is known to fail for materials that are stabilized at

finite temperatures, since anharmonic effects are not incor-

porated in the computational procedure. However, assuming

that the anharmonic contributions beyond quasiharmonicity

are negligible, we used QHA for calculations.

Quasi-harmonic approximation

To calculate the vibrational contributions in the free energy

and making finite temperature predictions, we need to

compute the vibrational free energy Fvib and add it

to the ground state energy U0 resulted from

DFT:F T;Vð Þ ¼ U0ðVÞ þ Fvib T ;Vð Þ. The Fvib is derived

from the phonon density of states as the following

Fvib Tð Þ ¼ kBT

Z1

0

1

2
�hxþ kBT ln 1� e

� �hx
kBT

� �� �
gðxÞ dx;

where gðxÞ is the phonon density of states, and kB is the

Boltzmann’s constant. Fvib T ;Vð Þ is calculated for several

lattice constants around the equilibrium one. By fitting the

data with third-order Birch–Murnaghan equation of state,1

the equilibrium lattice constant can be determined at each

temperature assuming that qB/qP = const. where B and

P are isothermal bulk modulus and pressure, respectively.

By calculations for various lattice constants the thermal

expansion is indirectly taken into account. However, at the

level of QHA the anharmonicity is ignored. By employing

the QHA, we can obtain entropy of vibration, and specific

heat at constant volume at finite temperature from phonon

density of states with various lattice volumes.

Elastic constants

In cubic systems, the elastic tensor has three independent

elastic constants namely, C12, C22, and C44. The elastic

1 The Birch-Murnaghan equation of state for the energy E as a

function of volume V reads E(V) = E0 ? 9/8(BV0)[(V0/V)
2/3

- 1]2 {1 ? [(4 - B0)/2][1 - (V0/V)
2/3]}. E, E0, V, V0, B and B0 are

the energy, minimum energy, the volume, volume at the minimum

energy, the bulk modulus and its pressure derivative, respectively.
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constants can be extracted from vibrational acoustic dis-

persion slopes as the following.

v
½100�
l ¼

ffiffiffiffiffiffiffi
C11

q

s
; v

½100�
t ¼

ffiffiffiffiffiffiffi
C44

q

s
;

v
½111�
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11 þ 2C12 þ 4C44

3q

s
;

where v
½100�
l , v

½100�
t , v

½111�
l , and q are longitudinal and trans-

verse velocities of the sound along [100] direction, longi-

tudinal sound velocity along [111] direction, and the

density, respectively. To further explore the properties of

phonons, the Debye temperature hD can be derived from

the average sound velocity vs using the following

equations:

1

v3s
¼ 1

3

1

v3l
þ 2

v3t

� �
; hD ¼ h

kB

3

4pVa

� �1=3

vs;

where h and kB are Planck’s and Boltzmann’s constants

and Va is the atomic volume.

Grüneisen parameter

The phonon process dominant in thermal conductivity of

crystalline materials at temperatures above 1/3 the Debye

temperature is the Umklapp process, in which the phonon

momentum is changed by a reciprocal lattice vector. This

process originates from the anharmonicity of atomic

interactions and harmonic force constants [25]. In this

study, we investigate on the Grüneisen parameter as one

measure to estimate the anharmonicity strength of the

atomic interactions in selected materials. The overall

Grüneisen parameter is defined as

c ¼
P

k;i ck;icv;iðkÞP
k;i cv;iðkÞ

; cv;i kð Þ ¼ �hxiðkÞ
V

o

oT

1

e�hxiðkÞ=kBT � 1

� �

in which cv;iðkÞ is the contribution of the mode (k, i) to the

volumetric specific heat cv and ck;i are the mode Grüneisen

parameters which describe the relative shift of phonon

frequency of the mode (k, i) with the change of the volume.

In the Debye approximation, all the normal-mode fre-

quencies scale linearly with the Debye temperature, and

therefore the overall Grüneisen parameter is given by [3]

c ¼ ci;k

	 

¼ � VoxiðjÞ

xiðjÞoV

� �
;

where the mode is indicated by the wave vector k and the

branch i. The angular frequency and the volume are rep-

resented by x, and V, respectively.

Thermal expansion coefficient

It is well-known that anharmonic phonon–phonon inter-

actions in diamond silicon cause to negative thermal

expansion in the T = 0–150 K range. We employ the QHA

to study the temperature variation of thermal expansion

coefficient. At all temperatures, LDA systematically

underestimates lattice constants and coefficients of thermal

expansion, whereas GGA overestimates them [26]. The

linear CTE is defined as

aL ¼ 1

3

1

V0

oV

oT
¼ 1

3B

X
i;k

cv;i kð Þci kð Þ;

where V is the volume, V0 is the equilibrium volume, T is

the absolute temperature, and B is the bulk modulus. The

second expression in terms of mode Grüneisen parameters

is obtained within QHA [3].

Thermal conductivity

Various phonon scattering mechanisms are involved in

determination of lattice thermal conductivity. We assume

that the heat is conducted only by acoustic phonons and

Umklapp processes are dominant in phonon scatterings and

use Slack’s model [9] to compare the thermal conductivi-

ties of selected silicon clathrates. This formula has been

used successfully to predict the thermal conductivity of

many materials [27]. The lattice thermal conductivity in

Slack’s model can be written as

KL ¼ A �Mh3Ddn1=3

c2T
;

where �M is the average atomic mass, hD is the acoustic

Debye temperature, d3 is the average volume per atom, n is

the number of atoms in each primitive cell, c is the Grü-

neisen parameter, T is the absolute temperature and A is a

numerical coefficient in which Julian [28] determined an

expression for it as A ¼ 2:43�10�6

1�0:514
c þ0:228

c2

� � : The Debye temper-

ature and Grüneisen parameter have central role in deter-

mination of the magnitude of lattice thermal conductivity

and can be calculated from the first-principles methods

such as density functional theory. The three parameters

M; hD; d represent the harmonic properties, and bonding

strength and moreover, are related to the average group

velocities of acoustic phonons. At very low temperatures,

the acoustic phonon modes are dominant in determining

the thermal conductivity of materials and as temperature

raises the contribution of the acoustic phonon modes in

thermal conductivity reduces while the excited optical

phonon modes start to contribute more. Therefore, as the

temperature increases, the Debye temperature decreases

J Mater Sci (2016) 51:4538–4548 4541

123



initially and reaches a minimum value hD;min at a specific

temperature. The hD;min is a good approximation for the

high temperature limit of the acoustic-phonon-associated

Debye temperature. Beyond that specific temperature, and

due to simultaneous reduction of acoustic phonon modes

and increment of optical phonon modes contributing in

thermal conductivity, the Debye temperature increases with

temperature. The lower limit of acoustic-mode Debye

temperature can be calculated from the classical definition

of the lower limit for the Debye temperature hmin in which

is estimated from specific heat as the following

hD;min ¼ hminn�1=3:

hD is independent of n and therefore to express the n-

dependency of the lattice thermal conductivity, the Slack’s

formula can be rewritten as

KL ¼ A �Mh3Dd

c2Tn2=3

Results and discussion

Structure stability and phase transition

Table 2 lists the calculated lattice constants, formation

energies, and the bulk moduli for the optimized silicon

clathrates. The energy-volume curves were fitted to the

Birch-Murnaghan equation of state (Footnote 1) to obtain

the equilibrium lattice constants at T = 0, and the bulk

moduli. The electronic energy of formation refers to the

electronic part of the formation energy with respect to the

elements in their standard state. The electronic part of the

formation energies were calculated from the equation:

Ef Sinð Þ ¼ ESin � nESi;

where ESi is the electronic energy per Si atom in diamond

structure, and n is the number of atoms in the primitive unit

cell. The formation energy determines if it is energetically

favorable for a material to form in comparison with the

solids formed by its constituents. All the calculated ener-

gies of formation are positive indicating that the selected

structures are not more stable than their constituents and

the chemical reaction of formations are endothermic. In

fact, the formation reactions need extra energy to be ini-

tiated. It is also seen that the formation energy increases as

the number of atoms in the primitive unit cell grows. Our

calculated formation energies and bulk moduli considering

that GGA underestimate them compared to LDA are con-

sistent with previous theoretical study [29].

We examined the ground state structural stability of

selected silicon clathrates at zero temperature and pressure

and compared them with that of diamond-structured silicon

(d-si). As the volume change is very small in an ambient

pressure the solid–solid phase transitions can be studied

with Helmholtz free energy instead of Gibbs free energy.

Figure 2a depicts the calculated total energy versus volume

for the type-I, type-II, and type-VIII silicon clathrates and

Table 2 The calculated values of lattice constants (a), bulk moduli

(B), and formation energies (Ef ) for the studied clathrate structures

a (Å) B (GPa) Ef (kJ/mol)

Si46-I 10.229 78.5 6.01

Si136-II 14.7225 80.1 5.06

Si46-VIII 10.1015 80.3 7.84
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Fig. 2 a Energy per atom versus volume per atom of four silicon

phases: diamond, clathrate-I, clathrate-II and clathrate-VIII. The data

obtained from GGA-PBE calculations and is fitted with the Birch-

Murnaghan equation of state. The curves of clathrates are on the right

of the diamond phase. b Enthalpy versus pressure at room temper-

ature obtained with the GGA method for the type-I, type-II, and type-

VIII silicon clathrates
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for the diamond phase of silicon as well. It is revealed that

compared to d-si, all clathrate structures can be considered

as metastable structure. Among considered silicon clathrate

structures, the Si136-II has the most stable ground state due

to its lower energy while that of the Si46-VIII has higher

ground state energy. It is notable that, the relative structural

stability of clathrates originates from two types of distor-

tions. First, the small angle distortions in hybridized sp [3]

orbitals and second the elasticity of the bond-bending

distortion modes [30, 31]. Figure 2a shows a crossing of

three energy-volume curves at * 21.9 Å3 with the volume

compression so, the structural phase transition from Si46-I

to Si136-II and Si46-VIII may occur with compression of the

lattice under hydrostatic pressure. To investigate the effect

of pressure on structural stability and possible phase tran-

sitions under pressure the enthalpies (H = U ? PV) were

calculated.

Figure 2b illustrates the enthalpy for the three selected

silicon clathrates as a function of hydrostatic pressure

calculated at room temperature using QHA. The structure

in which has the lowest enthalpy is the most stable. A

crossing of two enthalpy-pressure curves is a sign for a

pressure-driven phase transition. The calculated results

indicate that the enthalpies of all selected clathrate struc-

tures increase as the pressure raises. However, the curve

slopes show that enthalpy of the Si136-II increases faster

than that of Si46-I and Si46-VIII. The enthalpy data show

that Si46-I is always more stable than the Si46-VIII as its

enthalpy curve is lower than that of Si46-VIII at the whole

range of pressure. So, increment of the hydrostatic pressure

cannot lead to phase transition from Si46-I to Si46-VIII. The

phase transition can occur at curve crossings. In fact, for

those pressures where the enthalpies of two phases are

equal, and no phase has a lower enthalpy a phase transition

is possible. Figure 2b depicts that the enthalpy curve of

Si136-II crosses those of Si46-I and Si46-VIII curves at *1,

and *2 GPa, respectively. The second crossing point

(*2 GPa) cannot lead to a phase transition as the Si46-I

phase has a lower enthalpy. However, the lower crossing

point shows that a pressure-driven phase transition from

Si136-II phase to Si46-I phase may happen. Nevertheless, a

thorough analysis of the effect of temperature and elastic

stability is required to establish a better understanding of

crystal structure.

Next, to evaluate the possibility of a temperature-driven

phase transition between Si46-I and Si46-VIII phases the

Helmholtz free energies were calculated for several lattice

constants around the equilibrium one to obtain the mini-

mum lattice constant at each temperature. Figure 3a, and b

show the Helmholtz free energies of Si46-I and Si46-VIII

structures versus lattice constant at temperatures from 0 to

1400 K at increments of 100 K. The points on the T = 0

curves in the above plots were obtained by DFT-based
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Fig. 3 Volume versus Helmholtz free energy curves are at incre-

ments of 100 K between 0 and 1400 K for a Si46-I and b Si46-VIII

clathrates. c A comparison between two methods for calculation of

Helmholtz free energies to obtain the temperature-driven phase

transition: the QHA which does not account anharmonicity directly

(red curve) and the minimization of free energy over several lattice

constants around the equilibrium one which takes into account the

anharmonicity directly (blue curve)

J Mater Sci (2016) 51:4538–4548 4543

123



lattice dynamical calculations (phonon calculations) and

their equivalent points on T[ 0 curves were obtained

using QHA. By adopting this approach, we were able to

minimize the Helmholtz free energy over several lattice

constants around the equilibrium one at each selected

temperature and indirectly incorporate the effect of thermal

expansion on lattice constant. Figure 3c demonstrates the

curves of Helmholtz free energy difference between Si46-I

and Si46-VIII structures. The blue curve represents the

results of harmonic approximation in which does not into

account the effect of thermal expansion while the red curve

shows the results for the quasi-harmonic approximation

which incorporates the effect of thermal expansion. The

calculated transition points (1412 and 1295 K) are both

very high and close to the melting point which is expected

to be same as or near the melting point of the diamond

phase of silicon (1711 K). Therefore, the temperature-dri-

ven transition between Si46-I and Si46-VIII structures is

likely and possibly can be exploited to synthesize the

hypothetical clathrate phase of silicon Si46-VIII.

Phonon dispersion and density of states

Figure 4 depicts the phonon dispersions along high sym-

metry paths in the first Brillouin zone and phonon density

of states with arbitrary unit for Si46-I, Si136-II, Si46-VIII.

The phonon dispersions were computed by diagonalizing

the dynamical matrices. The clathrate structures Si46-I,

Si136-II, Si46-VIII show very similar phonon dispersions

and phonon density of states compared to each other. In all

the studied silicon clathrates the sharp features of the

phonon density of states (PDOS) are observed which are

corresponding to the relatively flat bands. The flatness of

dispersion bands of silicon clathrates in the region of

transverse acoustic modes which are related to the long

range interactions [32], has been reported already [29]. Our

calculated results are in good agreement with the previ-

ously reported empirical and theoretical studies [2, 22]. It is

observed that for the studied structures the optical modes

are locate within three bands. The low-frequency band

varies from 2 to 6 THz for Si46-I, Si136-II structures while

for the Si46-VIII it ranges within 3-6 THz. The medium-

frequency band which is the broadest one in all cases

spreads over 6-12.8 THz for Si46-I, Si136-II, and 6-12.4

THz for Si46-VIII. The high-frequency band locate within

frequency ranges 12.8–14 and 12.4–15.5 THz, respec-

tively, for Si46-I, Si136-II, and Si46-VIII. The low- and high-

frequency bands are narrow and relatively flat. The phonon

bandwidth of Si46-I, Si136-II structures spread almost over

the 0-14 THz while Si46-VIII has a broader range and

extends to *15.5 THz. The broader phonon bandwidth of

Si46-VIII provides more channels to conduct the heat and

compared to other two structures a higher thermal

conductivity can be expected. A common feature observed

in PDOS is high PDOS values within the frequency range

of 3-6 THz for the studied materials. As another common

feature, the structures show phonon band gaps at frequency

ranges of 12.93 to 13.21, 12.7 to 13.13, and 12.17 to 12.54

THz, with the phonon band gap values around 0.28, 0.43,

and 0.37 THz, respectively, for Si46-I, Si136-II, and Si46-

VIII.
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Fig. 4 Phonon dispersions along high symmetry paths in the first

Brillouin zone and phonon density of states with arbitrary unit for

studied silicon clathrates
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Anharmonicity measures

Grüneisen parameters

In order to have deeper insight into the anharmonic effect,

we calculated the mode Grüneisen parameters as the volume

derivative of the phonon frequencies on a 6 9 6 9 6 mesh

of reciprocal space points in which corresponds to actual

k-spacing of 0.1 per angstrom. The k-mesh was forced to be

centered on the gamma point. Figure 5 shows the calculated

Grüneisen parameters depending on the frequency for the

GGA functional. The overall Grüneisen parameter is more

appropriate in this study for further calculation of thermal

conductivity. The negative Grüneisen parameters are

observed when the phonon frequency is under 190, and

200 cm-1, equal to 5.7, and 6 THz, respectively, for Si136-II,

and Si46-VIII clathrates. The threshold of 190 cm-1 is valid

for the Si46-I clathrate as well. However, an exception

around 245 cm-1 (7.34 THz) is seen. Considering that other

researchers have used local density approximation, our cal-

culated Grüneisen parameters (by GGA) are in agreement

with the previous theoretical studies [2, 22]. Contrast to the

d-Si, in which the distribution of the mode Grüneisen

parameters versus frequency shows symmetric features, the

Grüneisen parameters of the studied silicon clathrates rep-

resent a broader spectrum at low frequencies, especially for

the Si46-I material.

Coefficients of thermal expansion

We used the results of our calculated GGA lattice constants

to predict CTE of Si46-I, and Si46-VIII clathrates. We also

calculated the CTE of diamond silicon to establish validity

of our calculations as well. The results are presented in

Fig. 6. In all three studied structures the CTE curves are

similar. Our calculations reveal that all studied silicon

clathrates have negative CTE with a minimum in 60-80 K

temperature range [33]. However, the calculated values for

the CTEs change versus temperature with different curve

slopes. While the CTE values of Si46-I and Si136-II

structures are larger than that of d-si, the Si46-VIII phase

has a smaller CTE.

It is notable that, according to a general trend for cal-

culations within the GGA framework, the calculated values

of aL are expected to overestimate the experimental aL.
Our calculated CTE for d-Si is in very good agreement

with the experimental result. All the calculated CTEs

exhibit a region of negative thermal expansion (NTE).

Such a region of NTE is well-known experimentally for the

d-Si. According to our results the minima of NTE regions

are located at 80, 60, 80, and 76 K, respectively, for d-Si,

Si46-I, Si136-II, and Si46-VIII in which are in very good

agreement with a similar theoretical study [2]. The NTE of

selected Si clathrates can be attributed to the phonon

anharmonicity.

Thermal conductivity

The Slack’s approach does not take into account the

underlying phonon scattering mechanisms and is mostly

Fig. 5 Mode Grüneisen

parameter for studied Si

clathrates. Each dot represents a

phonon mode at a q point

 (K
-1

) 

0 200 400 600 800 1000
-2

0

2

4

6

8
x 10-6

d-Si
Si46-I
Si136-II
Si46-VIII

T (K) 

Fig. 6 The calculated coefficients of linear thermal expansion using

GGA for studied Si clathrates versus temperature
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based on the Grüneisen parameter as a measure of

anharmonicity, Debye temperature and the number of

atoms in the unit cell. Table 3 presents all input

parameters for the Slack’s formula. All the parameters

shown in this table were obtained from this study. Our

calculated Debye temperatures are in excellent agreement

with previous theoretical study [29] in which reports

values of 551 and 516 K, respectively, for Si46-I, and

Si136-II clathrates. The average atomic masses for the

studied materials are the same and the Debye tempera-

tures are almost equal. Therefore, the average volume

per atom, the number of atoms in the primitive cell and

the Grüneisen parameter contribute the most in the

thermal conductivity. According to the Slack’s formula,

the thermal conductivity depends directly to the d and

inversely to the c2 and n2=3. So, the thermal conductivity

should decrease as the average volume per atom

decreases or the number of atoms in primitive cell and

Grüneisen parameter increase.

Figure 7 illustrates the calculated thermal conductivities

of studied Si clathrates using Slack’s formula. It shows that

the lowest thermal conductivity belongs to the type-II Si

clathrate material while the highest one belongs to the

type-VIII Si clathrate. The thermal conductivity values of

Si46-I, Si136-II, and Si46-VIII clathrates at room tempera-

ture are 4.9, 4.1, and 13.5 W/m–K, respectively. It is also

notable that the thermal conductivity curves of Si46-I and

Si136-II clathrates are very close to each other. The dis-

crepancy between measured (2.5 W/m–K at room tem-

perature [34]) and calculated values of thermal

conductivity for Si136-II can be attributed to the effect of

grain boundary, impurities, and defects scatterings in

which are existent in material samples and can significantly

lower the thermal conductivity.

The calculated thermal conductivities are very low and

in case of Si46-I, Si136-II structures approach to the amor-

phous limit at higher temperature. Such a small thermal

conductivity can be attributed to the relatively high amount

of the phonon anharmonicity, and complex structure of unit

cells. Such a suppression of thermal conductivity by the

phonon anharmonicity has been already reported for type-I

clathrates [35].

Thermoelectric efficiency

To the best of our knowledge, there is no report in literature

containing measured or calculated values of electrical

properties such as electrical conductivity and Seebeck

coefficient for clathrates Si46-I and Si136-II. However, our

previous study based on DFT calculations revealed a large

number of closely packed electron pockets near both the

conduction and valance band edges [36]. Such an

extraordinary bandstructure is mostly desired for TE

applications. The large number of band degeneracy is

predicted to generate large Seebeck coefficient and the high

band curvature would cause low conductivity effective

mass; hence, a high carrier mobility. Both such properties

favor the enhancement of the TE power factor. We expect

that the parental Si46-VIII should make available a favor-

able starting material in search of Si-based TE materials.

The intercalation of the pristine Si46-VIII with a guest atom

would introduce opportunity for concurrent reduction of

the thermal conductivity and improvement of the TE power

factor, which has been indeed a tough challenge in

designing efficient TE materials. We have already pre-

dicted an extraordinarily large power factor for clathrate

Si46-VIII [37]. Moreover, the electronic structure of alkali

Table 3 The parameters of the Slack’s formula such as M (average

atomic mass), d (the average volume per atom), n (the number of

atoms in primitive cell), hD (Debye temperature), and c (weighted

average Grüneisen parameter) along with the sound velocities and

elastic constants for Si46-I, Si136-II, and Si46-VIII clathrates. All the

parameters were obtained from this study

M (amu) d (Å
´
) n hD (K) c vl (m/s) vt (m/s) C11 (GPa) C12 (GPa) C44 (GPa)

Si46-I 28.0855 2.8548 46 550 1.5 8244 4746 130.9 48.7 48.2

Si136-II 28.0855 2.8665 34 519 1.65 8185 4450 143 53.3 38

Si46-VIII 28.0855 3.552 23 549 1.29 8011 4557 139.3 46.3 42.3

Fig. 7 The calculated thermal conductivities of studied silicon

clathrates using Slack’s formula
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and alkaline-earth intercalated type-VIII Si clathrates have

been investigated and potential large power factors due to

the existence of a large number of carrier pockets near their

band edges were predicted [38]. We utilized our own cal-

culated results in Ref. [37] and the calculated thermal

conductivity based on the Slack’s formula to estimate the

figure-of-merit ZT for both p-type and n-type clathrates

Si46-VIII materials. We have neglected the contribution of

charge carriers into the total thermal conductivity. Figure 8

demonstrates the calculated values of ZT (left vertical axis)

and power factor multiplied by T (right vertical axis) ver-

sus temperature for both p-type and n-type Si46-VIII

clathrate materials at a doping concentration of

1.1 9 1021 cm-3. The blue and green curves are corre-

sponding to values of ZT and PFT, respectively. Each

curve has been labeled by p-type or n-type to indicate the

type of carrier concentration.

Figure 8 shows that in both p-type and n-type Si46-VIII

materials ZT increases as temperature raises. The predicted

ZT at room temperature for p-type and n-type Si46-VIII

materials are, respectively, *0.6 and *0.45. It should be

noted that the clathrate Si46-VIII is a parental material and

its TE performance can be enhanced by well-established

techniques for reducing the thermal conductivity or

improving the power factor.

Summary and conclusion

We have performed first-principles lattice dynamical cal-

culations based on density functional theory on Si46-I,

Si136-II, Si46-VIII materials and analyzed their structural

stability, possibility of pressure-driven or temperature-dri-

ven phase transitions, and the degree of phonon anhar-

monicity through evaluation of three properties such as

Grüneisen parameter, coefficient of thermal expansion, and

thermal conductivity. For this purpose, we conducted lat-

tice dynamic calculations using DFT and calculated the

volume-dependent free energies within QHA. The rela-

tively high Grüneisen parameters, and very low thermal

conductivities along with the existence of negative region

in thermal expansion coefficients of studied Si clathrates;

all can be attributed to the highly anharmonic phonon

interactions. These results implicate that the optical pho-

nons could have a significant role in scattering acoustic

phonons through anharmonic phonon interactions. The

calculated low thermal conductivities of studied pristine

silicon clathrates would open road for designing high

performance Si-based TE materials.
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