Supporting Information

Framework Contraction in Na-stuffed Si(cF136)

Matt Beekman^{*a*}, Emmanuel N. Nenghabi^{*b*,%}, Koushik Biswas^{*c*}, Charles W. Myles^{*b*}, Michael Baitinger^{*d*}, Yuri Grin^{*d*}, and George S. Nolas^{*a*,*}

^aDepartment of Physics, University of South Florida, Tampa, FL 33620 ^bDepartment of Physics, Texas Tech University, Lubbock Texas 79409 ^cNational Renewable Energy Laboratory, Golden, CO 80401 ^dMax-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany [%]Deceased.

*Corresponding author: gnolas@cas.usf.edu

S1. Specimen Preparation, Experimental Methods, and Computational Details

S1.1 Synthesis

Twelve Na_xSi₁₃₆ specimens were synthesized by thermal decomposition of crystalline Na₄Si₄. Na₄Si₄ was first prepared by reaction of elemental Na (Alfa Aesar, 99.95%) and Si (Alfa Aesar, 99.9999%) in the nominal stoichiometry Na:Si of 1.1:1. All handling was performed in a nitrogen filled glove box due to the extreme sensitivity of Na and Na₄Si₄ to air and moisture. Reactions were carried out in tungsten metal crucibles, under high purity nitrogen gas in sealed steel reaction vessels. (SAFETY NOTE: Na₄Si₄ can react explosively with water. Take extreme caution and use appropriate safety procedures.) The steel vessels were themselves sealed under nitrogen inside fused silica ampoules. The products of this reaction contain crystalline Na₄Si₄ with excess free Na metal, which was removed by evaporation under high vacuum (10⁻⁶ torr) at 275 °C. Thermal decomposition was initiated by rapidly heating the Na₄Si₄ precursor in a process similar to that reported by Gryko [S1], resulting in a specimen with *x* nearly 24: 34Na₄Si₄ \rightarrow Na₂₄₋₈Si₁₃₆ + (112 + δ)Na (*g*), where 0 < δ < 1. The Na content is then further adjusted by heating temperature and time, ranging from 75 minutes at 380 °C for Na_{22.8}Si₁₃₆ to 5 days at 420 °C for Na_{1.0}Si₁₃₆. The microcrystalline products were then vented to a nitrogen atmosphere without exposure to air, washed first with ethanol then distilled water, sonicated, allowed to settle, decanted, and thoroughly dried. The resulting Na_xSi₁₃₆ crystalline powder is very stable toward air and moisture.

S1.2 Powder X-ray Diffraction Data Collection and Rietveld Refinement

Powder specimens were thoroughly ground by hand in a nitrogen glove box prior to powder diffraction data collection. The powder was loaded into a back-loading specimen holder, which insured a uniform powder specimen with a flat top surface, minimizing sample displacement effects during powder diffraction data collection. The diameter of the cylindrical opening accepting the specimen was large enough such that beam spillover (beam footprint effects) did not occur at low angles in the 2θ range of interest. Powder X-ray diffraction step scan data were collected using a Bruker D8 diffractometer in conventional Bragg-Brentano geometry. A graphite monochromator was employed, resulting in Cu K α_{1+2} radiation. Step scan diffraction intensity data were collected in the 2θ range from 7° to a

maximum angle of at least 140° , with a step size of 0.02° . High angle reflections were included to maximize the precision in lattice parameter determination.

Full-profile Rietveld refinements were carried out with the aid of the GSAS [S2] and EXPGUI [S3] software. Crystal structure refinements for all specimens were carried out within the Fd3m space group. Site occupancies for each specimen were allowed to refine. If occupancies were found to be insignificantly different from zero or unity (i.e. within 2σ), they were then fixed at the respective value in further refinement cycles. Otherwise the occupancies (i.e. Na, since silicon framework sites were always found to be fully occupied) were allowed to refine. Very large atomic displacement parameters $(> 0.1 \text{ Å}^2)$ for Na@Si₂₈ are obtained for all specimens, indicating substantial disorder for this site. Both on-center [10] and off-center models [S4, S5] have been proposed for the Na@Si₂₈ guest. We find two models we refined against our powder diffraction data (on-center Na at the 8b site and off-center Na at the 32e site) both describe our powder diffraction data equally well [S5], and do not result in significant differences in the lattice parameters or silicon framework positions. For the off-center model, the Na occupancy in the Si₂₈ cage in all cases refines to ¹/₄ the corresponding occupancy of the on-center model, consistent with the 4-fold increase in site multiplicity. The off-center shifts (c.f. Tables S1 - S12) are typically ~ 0.4 Å and the atomic displacement parameters are significantly reduced. The off-center model also results in more chemically reasonable Na-Si distances [S5]. In addition to overall (i.e. static) displacement, the disorder is also attributed to pronounced thermal motion of Na rattling, corresponding to an Einstein-like Na vibrational mode [S6].

The Si₂₀ and Si₂₈ cage volumes represented in Fig. 4 were calculated using the refined Si—Si distances and the distances from the Si framework sites (i.e. the polyhedron vertices) to the 16*c* and 8*b* sites, respectively, obtained from Rietveld refinement for each composition. Based on these distances, the irregular Si₂₀ dodecahedron and Si₂₈ hexacaidecahedron were partitioned into appropriate irregular tetrahedrons whose volumes were determined by appropriate vector products. The volumes of these irregular tetrahedrons were then summed to determine the respective cage volume.

S1.3 Computational Details

Our calculations were performed using the first-principles local density approximation (LDA) to density functional theory and we have used the projector augmented wave method [S7] as implemented in the Vienna *ab initio* simulation package (VASP) [S8]. The Ceperley–Alder functional [S9] as parametrized by Perdew and Zunger [S10] has been used to approximate the exchange correlation energy. The Si₁₃₆ clathrate structure was modeled using a 34-atom face centered cubic primitive unit cell. We found that a plane-wave energy cutoff of 300 eV was sufficient to calculate the structural properties with good accuracy and it was used in all the calculations. Brillouin-zone integrations were performed using a $4 \times 4 \times 4$ Monkhorst-Pack *k*-point grid [S11]. We have optimized the geometry by relaxing the volume as well as the cell internal coordinates. All forces were converged to within 0.1 meV/Å or less.

Compared to pristine Si₁₃₆, our LDA calculations find that the cell volume first contracts upon Na incorporation inside the large Si₂₈ cages (x = 4, 8 in Na_xSi₁₃₆). However, as the Na content is increased further, the additional Na guests must also occupy of the smaller Si₂₀ cages, which leads to a monotonic increase in cell volume for x > 8. As the Na content x increases from x = 0 to x = 8, our calculations find that the cell volumes for the face-centered cubic unit cell decrease from 772.46 Å³ for Si₁₃₆ to 768.36 Å³ for Na₈Si₁₃₆. Then, as the Na content is increased above x = 8, we find that this volume increases from 768.36 Å³ for Na₈Si₁₃₆ to 775.42 Å³ for Na₂₄Si₁₃₆. The contraction of volume (and therefore shorter Si-Si bonds) upon preferential filling of the Si₂₈ cages at x = 4 and 8 can be explained by the attractive interaction between the Na atoms and their neighboring Si. Normally, the extra $3s^1$ electron released by

a guest Na atom would occupy the antibonding levels, which also would result in an outward lattice relaxation (that is, increased volume). Clearly, this is not the case for x = 4 or 8 in Na_xSi₁₃₆. The details of the theoretical study of the changing nature of the guest-host interactions for different x will be published elsewhere.

S2. Refinement Results

Crystallographic data, including atomic positions and atomic displacement parameters, powder diffraction data, as well as refinement results for all specimens can be found in the crystallographic information file (CIF) and in Tables S1 – S12. Observed, calculated, and difference powder diffraction patterns obtained from Rietveld refinement for all specimens are given in Figures S1 – S12.

Atom	Site	x/a	y/b	z/c	Occ.	$U_{ m eq} { m or } U_{ m iso} \ ({ m \AA}^2)$			
Na@Si ₂₈ on-center model, $a = 14.7159(2)$ Å									
Na1	16 <i>c</i>	0	0	0	0.926(4)	0.0146			
Na2	8b	3/8	3/8	3/8	1	0.114(2)			
Si1	8a	1/8	1/8	1/8	1	0.0055			
Si2	32 <i>e</i>	0.21837(6)	X	x	1	0.0080			
Si3	96 <i>g</i>	0.06711(4)	X	0.37171(6)	1	0.0073			
Na@Si ₂₈ off-ce	enter model, a	a = 14.7159(2) Å							
Na1	16 <i>c</i>	0	0	0	0.926(4)	0.0148			
Na2	32 <i>e</i>	0.386(3)	x	x	0.251(2)	0.09(2)			
Si1	8a	1/8	1/8	1/8	1	0.0055			
Si2	32 <i>e</i>	0.21836(6)	x	x	1	0.0080			
Si3	96g	0.06712(4)	x	0.37171(6)	1	0.0073			

Table S1. Refined atomic positions, occupancies, and equivalent (U_{eq}) or isotropic (U_{iso}) atomic displacement parameters for Na_{22.8}Si₁₃₆. Where U_{eq} are given, anisotropic displacement parameters and estimated standard deviations can be found in the CIF.

Figure S1. Observed (red crosses), calculated (green curve), and difference (purple curve) powder X-ray diffraction patterns for Na_{22.8}Si₁₃₆ (on-center model). Black tick marks (lower) indicate reflection positions for the Na_{22.8}Si₁₃₆ phase, red tick marks (upper) indicate reflection positions for the Na₈Si₄₆ impurity phase (est. wt% ~ 3%). Refinement residuals: $\chi^2 = 1.8$; $wR_p = 0.088$, $R_p = 0.066$, $R(F^2) = 0.027$.

Atom	Site	x/a	y/b	z/c	Occ.	$U_{ m eq} { m or } U_{ m iso} \ ({ m \AA}^2)$			
Na@Si ₂₈ on-center model, $a = 14.7097(2)$ Å									
Na1	16 <i>c</i>	0	0	0	0.859(4)	0.0145(9)			
Na2	8b	3/8	3/8	3/8	1	0.115(2)			
Si1	8a	1/8	1/8	1/8	1	0.0049			
Si2	32 <i>e</i>	0.21829(5)	X	X	1	0.0068			
Si3	96 <i>g</i>	0.06715(3)	x	0.37168(6)	1	0.0070			
Na@Si ₂₈ off-ce	enter model, a	u = 14.7098(2) Å							
Na1	16 <i>c</i>	0	0	0	0.859(4)	0.0146(9)			
Na2	32 <i>e</i>	0.390(1)	x	x	0.250(2)	0.063(9)			
Si1	8a	1/8	1/8	1/8	1	0.0049			
Si2	32 <i>e</i>	0.21829(5)	x	x	1	0.0068			
Si3	96 <i>g</i>	0.06716(3)	X	0.37167(6)	1	0.0070			

Table S2. Refined atomic positions, occupancies, and equivalent (U_{eq}) or isotropic (U_{iso}) atomic displacement parameters for Na_{21.8}Si₁₃₆. Where U_{eq} are given, anisotropic displacement parameters and estimated standard deviations can be found in the CIF.

Figure S2. Observed (red crosses), calculated (green curve), and difference (purple curve) powder X-ray diffraction patterns for Na_{21.8}Si₁₃₆ (on-center model). Black tick marks (lower) indicate reflection positions for the Na_{21.8}Si₁₃₆ phase, red tick marks (upper) indicate reflection positions for the Na₈Si₄₆ impurity phase (est. wt% ~ 3%). Refinement residuals: $\chi^2 = 1.7$; $wR_p = 0.087$, $R_p = 0.065$, $R(F^2) = 0.024$.

Atom	Site	x/a	y/b	z/c	Occ.	$U_{ m eq} { m or } U_{ m iso} \ ({ m \AA}^2)$			
Na@Si ₂₈ on-center model, $a = 14.6847(2)$ Å									
Na1	16 <i>c</i>	0	0	0	0.561(3)	0.012(1)			
Na2	8b	3/8	3/8	3/8	1	0.117(2)			
Si1	8a	1/8	1/8	1/8	1	0.0051(5)			
Si2	32 <i>e</i>	0.21791(5)	X	X	1	0.0063			
Si3	96 <i>g</i>	0.06715(3)	x	0.37147(5)	1	0.0069			
Na@Si ₂₈ off-ce	enter model, <i>a</i>	= 14.6848(2) Å							
Na1	16 <i>c</i>	0	0	0	0.561(4)	0.012(1)			
Na2	32 <i>e</i>	0.3912(8)	x	x	0.250(2)	0.056(7)			
Si1	8a	1/8	1/8	1/8	1	0.0050(5)			
Si2	32 <i>e</i>	0.21790(5)	X	x	1	0.0064			
Si3	96 <i>g</i>	0.06716(3)	X	0.37148(6)	1	0.0068			

Table S3. Refined atomic positions, occupancies, and equivalent (U_{eq}) or isotropic (U_{iso}) atomic displacement parameters for Na_{17.0}Si₁₃₆. Where U_{eq} are given, anisotropic displacement parameters and estimated standard deviations can be found in the CIF.

Figure S3. Observed (red crosses), calculated (green curve), and difference (purple curve) powder X-ray diffraction patterns for Na_{17.0}Si₁₃₆ (on-center model). Black tick marks (lower) indicate reflection positions for the Na_{17.0}Si₁₃₆ phase, red tick marks (upper) indicate reflection positions for the Na₈Si₄₆ impurity phase (est. wt% ~ 3%). Refinement residuals: $\chi^2 = 1.6$; $wR_p = 0.081$, $R_p = 0.061$, $R(F^2) = 0.023$.

Atom	Site	x/a	y/b	z/c	Occ.	$U_{ m eq} { m or } U_{ m iso} \ ({ m \AA}^2)$			
Na@Si ₂₈ on-center model, $a = 14.6685(2)$ Å									
Na1	16 <i>c</i>	0	0	0	0.364(4)	0.014(2)			
Na2	8b	3/8	3/8	3/8	1	0.122(2)			
Si1	8a	1/8	1/8	1/8	1	0.0090(7)			
Si2	32 <i>e</i>	0.21768(6)	X	x	1	0.0091			
Si3	96 <i>g</i>	0.06708(4)	X	0.37128(6)	1	0.0089			
Na@Si ₂₈ off-ce	enter model, a	a = 14.6685(2) Å							
Na1	16 <i>c</i>	0	0	0	0.362(4)	0.0132(2)			
Na2	32 <i>e</i>	0.3918(8)	х	x	0.245(2)	0.050(8)			
Si1	8a	1/8	1/8	1/8	1	0.0089(7)			
Si2	32 <i>e</i>	0.21768(6)	X	x	1	0.0091			
Si3	96g	0.06709(4)	X	0.37130(6)	1	0.0088			

Table S4. Refined atomic positions, occupancies, and equivalent (U_{eq}) or isotropic (U_{iso}) atomic displacement parameters for Na_{13.8}Si₁₃₆. Where U_{eq} are given, anisotropic displacement parameters and estimated standard deviations can be found in the CIF.

Figure S4. Observed (red crosses), calculated (green curve), and difference (purple curve) powder X-ray diffraction patterns for Na_{13.8}Si₁₃₆ (on-center model). Black tick marks (lower) indicate reflection positions for the Na_{13.8}Si₁₃₆ phase, red tick marks (upper) indicate reflection positions for the Na₈Si₄₆ impurity phase (est. wt% ~ 3%). Refinement residuals: $\chi^2 = 1.9$; $wR_p = 0.095$, $R_p = 0.070$, $R(F^2) = 0.031$.

Atom	Site	x/a	y/b	z/c	Occ.	$U_{ m eq} { m or } U_{ m iso} \ ({ m \AA}^2)$			
Na@Si ₂₈ on-center model, $a = 14.6611(2)$ Å									
Na1	16 <i>c</i>	0	0	0	0.284(3)	0.0104			
Na2	8b	3/8	3/8	3/8	1	0.128(2)			
Si1	8a	1/8	1/8	1/8	1	0.0053(5)			
Si2	32 <i>e</i>	0.21766(5)	X	X	1	0.0073			
Si3	96 <i>g</i>	0.06706(3)	x	0.37139(6)	1	0.0075			
Na@Si ₂₈ off-ce	enter model, <i>a</i>	= 14.6611(2) Å							
Na1	16 <i>c</i>	0	0	0	0.282(3)	0.0095			
Na2	32 <i>e</i>	0.3910(9)	х	x	0.245(2)	0.063(8)			
Si1	8a	1/8	1/8	1/8	1	0.0052(5)			
Si2	32 <i>e</i>	0.21766(5)	x	x	1	0.0073			
Si3	96g	0.06707(3)	x	0.37141(6)	1	0.0074			

Table S5. Refined atomic positions, occupancies, and equivalent (U_{eq}) or isotropic (U_{iso}) atomic displacement parameters for Na_{12.5}Si₁₃₆. Where U_{eq} are given, anisotropic displacement parameters and estimated standard deviations can be found in the CIF file.

Figure S5. Observed (red crosses), calculated (green curve), and difference (purple curve) powder X-ray diffraction patterns for Na_{12.5}Si₁₃₆ (on-center model). Black tick marks (lower) indicate reflection positions for the Na_{12.5}Si₁₃₆ phase, red tick marks (upper) indicate reflection positions for the Na₈Si₄₆ impurity phase (est. wt% ~ 2%). Refinement residuals: $\chi^2 = 1.6$; $wR_p = 0.081$, $R_p = 0.061$, $R(F^2) = 0.024$.

Atom	Site	x/a	y/b	z/c	Occ.	$U_{ m eq} { m or } U_{ m iso} \ ({ m \AA}^2)$			
Na@Si ₂₈ on-center model, $a = 14.6550(2)$ Å									
Na1	16 <i>c</i>	0	0	0	0.197(4)	0.0083			
Na2	8b	3/8	3/8	3/8	0.973(8)	0.122(3)			
Si1	8a	1/8	1/8	1/8	1	0.0061(6)			
Si2	32 <i>e</i>	0.21753(5)	X	x	1	0.0072			
Si3	96 <i>g</i>	0.06708(3)	x	0.37116(6)	1	0.0072			
Na@Si ₂₈ off-ce	enter model, <i>a</i>	= 14.6550(2) Å							
Na1	16 <i>c</i>	0	0	0	0.196(4)	0.0081			
Na2	32 <i>e</i>	0.3912(9)	х	x	0.242(2)	0.060(8)			
Si1	8a	1/8	1/8	1/8	1	0.0060(6)			
Si2	32 <i>e</i>	0.21752(5)	X	X	1	0.0073			
Si3	96 <i>g</i>	0.06709(3)	X	0.37117(6)	1	0.0071			

Table S6. Refined atomic positions, occupancies, and equivalent (U_{eq}) or isotropic (U_{iso}) atomic displacement parameters for Na_{10.9}Si₁₃₆. Where U_{eq} are given, anisotropic displacement parameters and estimated standard deviations can be found in the CIF file.

Figure S6. Observed (red crosses), calculated (green curve), and difference (purple curve) powder X-ray diffraction patterns for Na_{10.9}Si₁₃₆ (on-center model). Black tick marks (lower) indicate reflection positions for the Na_{10.9}Si₁₃₆ phase, red tick marks (upper) indicate reflection positions for the Na₈Si₄₆ impurity phase (est. wt% ~ 3%). Refinement residuals: $\chi^2 = 1.7$; $wR_p = 0.086$, $R_p = 0.064$, $R(F^2) = 0.024$.

Atom	Site	x/a	y/b	z/c	Occ.	$U_{ m eq} { m or } U_{ m iso} \ ({ m \AA}^2)$			
Na@Si ₂₈ on-center model, $a = 14.6454(2)$ Å									
Na1	16 <i>c</i>	0	0	0	0.077(3)	0.012			
Na2	8b	3/8	3/8	3/8	0.969(8)	0.132(4)			
Si1	8a	1/8	1/8	1/8	1	0.0064(6)			
Si2	32 <i>e</i>	0.21746(5)	X	x	1	0.0076			
Si3	96 <i>g</i>	0.06704(3)	X	0.37102(6)	1	0.0075			
Na@Si ₂₈ off-ce	enter model, a	= 14.6454(2) Å							
Na1	16 <i>c</i>	0	0	0	0.076(3)	0.012			
Na2	32 <i>e</i>	0.3923(8)	х	x	0.240(2)	0.061(8)			
Si1	8a	1/8	1/8	1/8	1	0.0064(6)			
Si2	32 <i>e</i>	0.21745(5)	X	x	1	0.0077			
Si3	96 <i>g</i>	0.06705(3)	X	0.37103(6)	1	0.0074			

Table S7. Refined atomic positions, occupancies, and equivalent (U_{eq}) or isotropic (U_{iso}) atomic displacement parameters for Na_{9.0}Si₁₃₆. Where U_{eq} are given, anisotropic displacement parameters and estimated standard deviations can be found in the CIF file.

Figure S7. Observed (red crosses), calculated (green curve), and difference (purple curve) powder X-ray diffraction patterns for Na_{9.0}Si₁₃₆ (on-center model). Black tick marks (lower) indicate reflection positions for the Na_{9.0}Si₁₃₆ phase, red tick marks (upper) indicate reflection positions for the Na₈Si₄₆ impurity phase (est. wt% ~ 3%). Refinement residuals: $\chi^2 = 1.8$; $wR_p = 0.089$, $R_p = 0.067$, $R(F^2) = 0.026$.

Atom	Site	x/a	y/b	z/c	Occ.	$U_{ m eq} { m or } U_{ m iso} \ ({ m \AA}^2)$			
Na@Si ₂₈ on-center model, $a = 14.6429(2)$ Å									
Na1	16 <i>c</i>	0	0	0	0.031(3)	0.012			
Na2	8b	3/8	3/8	3/8	0.941(8)	0.137(4)			
Si1	8a	1/8	1/8	1/8	1	0.0083			
Si2	32 <i>e</i>	0.21743(5)	X	X	1	0.0085			
Si3	96 <i>g</i>	0.06705(3)	x	0.37092(6)	1	0.0083			
Na@Si ₂₈ off-ce	enter model, a	a = 14.6429(2) Å							
Na1	16 <i>c</i>	0	0	0	0.030(3)	0.012			
Na2	32 <i>e</i>	0.3926(8)	х	x	0.233(2)	0.062(8)			
Si1	8a	1/8	1/8	1/8	1	0.0083			
Si2	32 <i>e</i>	0.21742(5)	x	x	1	0.0086			
Si3	96 <i>g</i>	0.06707(3)	X	0.37093(6)	1	0.0081			

Table S8. Refined atomic positions, occupancies, and equivalent (U_{eq}) or isotropic (U_{iso}) atomic displacement parameters for Na_{8.0}Si₁₃₆. Where U_{eq} are given, anisotropic displacement parameters and estimated standard deviations can be found in the CIF file.

Figure S8. Observed (red crosses), calculated (green curve), and difference (purple curve) powder X-ray diffraction patterns for Na_{8.0}Si₁₃₆ (on-center model). Black tick marks (lower) indicate reflection positions for the Na_{8.0}Si₁₃₆ phase, red tick marks (upper) indicate reflection positions for the Na₈Si₄₆ impurity phase (est. wt% ~ 3%). Refinement residuals: $\chi^2 = 1.8$; $wR_p = 0.089$, $R_p = 0.067$, $R(F^2) = 0.026$.

Atom	Site	x/a	y/b	z/c	Occ.	$U_{ m eq} { m or } U_{ m iso} \ ({ m \AA}^2)$			
Na@Si ₂₈ on-center model, $a = 14.6418(2)$ Å									
Na1	16 <i>c</i>	0	0	0	0.010(3)	0.012			
Na2	8b	3/8	3/8	3/8	0.832(8)	0.143(4)			
Si1	8a	1/8	1/8	1/8	1	0.0063(6)			
Si2	32 <i>e</i>	0.21738(5)	X	X	1	0.0076			
Si3	96 <i>g</i>	0.06703(3)	X	0.37102(6)	1	0.0078			
Na@Si ₂₈ off-ce	enter model, a	= 14.6418(2) Å							
Na1	16 <i>c</i>	0	0	0	0.009(3)	0.012			
Na2	32 <i>e</i>	0.3929(9)	х	x	0.206(2)	0.066(9)			
Si1	8a	1/8	1/8	1/8	1	0.0062(6)			
Si2	32 <i>e</i>	0.21737(5)	X	x	1	0.0077			
Si3	96g	0.06705(3)	X	0.37103(6)	1	0.0077			

Table S9. Refined atomic positions, occupancies, and equivalent (U_{eq}) or isotropic (U_{iso}) atomic displacement parameters for Na_{6.8}Si₁₃₆. Where U_{eq} are given, anisotropic displacement parameters and estimated standard deviations can be found in the CIF file.

Figure S9. Observed (red crosses), calculated (green curve), and difference (purple curve) powder X-ray diffraction patterns for Na_{6.8}Si₁₃₆ (on-center model). Black tick marks (lower) indicate reflection positions for the Na_{6.8}Si₁₃₆ phase, red tick marks (upper) indicate reflection positions for the Na₈Si₄₆ impurity phase (est. wt% ~ 4%). Refinement residuals: $\chi^2 = 1.9$; $wR_p = 0.089$, $R_p = 0.067$, $R(F^2) = 0.027$.

Atom	Site	x/a	y/b	z/c	Occ.	$U_{ m eq} { m or } U_{ m iso} \ ({ m \AA}^2)$			
Na@Si ₂₈ on-center model, $a = 14.6438(2)$ Å									
Na1	16 <i>c</i>	0	0	0	0	n/a			
Na2	8b	3/8	3/8	3/8	0.702(8)	0.141(5)			
Si1	8a	1/8	1/8	1/8	1	0.0078(6)			
Si2	32 <i>e</i>	0.21731(5)	X	x	1	0.0087			
Si3	96 <i>g</i>	0.06710(3)	x	0.37088(6)	1	0.0081			
Na@Si ₂₈ off-ce	enter model, a	= 14.6438(2) Å							
Na1	16 <i>c</i>	0	0	0	0	n/a			
Na2	32 <i>e</i>	0.3936(8)	X	X	0.174(2)	0.057(9)			
Si1	8a	1/8	1/8	1/8	1	0.0078(6)			
Si2	32 <i>e</i>	0.21730(5)	X	x	1	0.0088			
Si3	96g	0.06711(3)	X	0.37089(6)	1	0.0080			

Table S10. Refined atomic positions, occupancies, and equivalent (U_{eq}) or isotropic (U_{iso}) atomic displacement parameters for Na_{5.6}Si₁₃₆. Where U_{eq} are given, anisotropic displacement parameters and estimated standard deviations can be found in the CIF file.

Figure S10. Observed (red crosses), calculated (green curve), and difference (purple curve) powder X-ray diffraction patterns for Na_{5.6}Si₁₃₆ (on-center model). Black tick marks (lower) indicate reflection positions for the Na_{5.6}Si₁₃₆ phase, red tick marks (upper) indicate reflection positions for the Na₈Si₄₆ impurity phase (est. wt% ~ 3%). Refinement residuals: $\chi^2 = 1.9$; $wR_p = 0.090$, $R_p = 0.066$, $R(F^2) = 0.026$.

Atom	Site	x/a	y/b	z/c	Occ.	$U_{ m eq} { m or } U_{ m iso} \ ({ m \AA}^2)$			
Na@Si ₂₈ on-center model, $a = 14.6461(3)$ Å									
Na1	16 <i>c</i>	0	0	0	0	n/a			
Na2	8b	3/8	3/8	3/8	0.405(9)	0.119(9)			
Si1	8a	1/8	1/8	1/8	1	0.0052(7)			
Si2	32 <i>e</i>	0.21723(6)	X	x	1	0.0074			
Si3	96 <i>g</i>	0.06720(4)	X	0.37074(7)	1	0.0076			
Na@Si ₂₈ off-ce	enter model, a	= 14.6461(3) Å							
Na1	16 <i>c</i>	0	0	0	0	n/a			
Na2	32 <i>e</i>	0.395(1)	x	x	0.102(2)	0.026(1)			
Si1	8a	1/8	1/8	1/8	1	0.0051(7)			
Si2	32 <i>e</i>	0.21722(6)	x	X	1	0.0075			
Si3	96g	0.06721(4)	X	0.37074(7)	1	0.0075			

Table S11. Refined atomic positions, occupancies, and equivalent (U_{eq}) or isotropic (U_{iso}) atomic displacement parameters for Na_{3.2}Si₁₃₆. Where U_{eq} are given, anisotropic displacement parameters and estimated standard deviations can be found in the CIF file.

Figure S11. Observed (red crosses), calculated (green curve), and difference (purple curve) powder X-ray diffraction patterns for Na_{3.2}Si₁₃₆ (on-center model). Black tick marks (lower) indicate reflection positions for the Na_{3.2}Si₁₃₆ phase, red tick marks (upper) indicate reflection positions for the Na₈Si₄₆ impurity phase (est. wt% ~ 2%). Refinement residuals: $\chi^2 = 1.5$; $wR_p = 0.107$, $R_p = 0.079$, $R(F^2) = 0.034$.

Atom	Site	x/a	y/b	z/c	Occ.	$U_{ m eq} { m or } U_{ m iso} \ ({ m \AA}^2)$			
Na@Si ₂₈ on-center model, $a = 14.6477(2)$ Å									
Na1	16 <i>c</i>	0	0	0	0	n/a			
Na2	8b	3/8	3/8	3/8	0.128(5)	0.12			
Si1	8a	1/8	1/8	1/8	1	0.0061(6)			
Si2	32 <i>e</i>	0.21724(5)	X	x	1	0.0069			
Si3	96 <i>g</i>	0.06725(3)	X	0.37100(6)	1	0.0067			
Na@Si ₂₈ off-ce	enter model, a	= 14.6478(2) Å							
Na1	16 <i>c</i>	0	0	0	0	n/a			
Na2	32 <i>e</i>	0.4059(17)	X	X	0.041(2)	0.06			
Si1	8a	1/8	1/8	1/8	1	0.0065(6)			
Si2	32 <i>e</i>	0.21722(5)	X	x	1	0.0073			
Si3	96 <i>g</i>	0.06728(3)	X	0.37098(6)	1	0.0067			

Table S12. Refined atomic positions, occupancies, and equivalent (U_{eq}) or isotropic (U_{iso}) atomic displacement parameters for Na_{1.0}Si₁₃₆. Where U_{eq} are given, anisotropic displacement parameters and estimated standard deviations can be found in the CIF file.

Figure S12. Observed (red crosses), calculated (green curve), and difference (purple curve) powder X-ray diffraction patterns for Na_{1.0}Si₁₃₆ (on-center model). Black tick marks (lower) indicate reflection positions for the Na_{1.0}Si₁₃₆ phase, red tick marks (upper) indicate reflection positions for the Na₈Si₄₆ impurity phase (est. wt% ~ 2%). Refinement residuals: $\chi^2 = 1.9$; $wR_p = 0.093$, $R_p = 0.068$, $R(F^2) = 0.029$.

S3. Supplementary References

[S1] Gryko, J. U.S. Patent No. 6,423,286.

[S2] Larson, A.C.; Von Dreele, R.B. General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 2004.

[S3] Toby, B.H. J. Appl. Cryst. 2001, 34, 210.

[S4] Brunet, F.; Mélinon, P.; San-Miguel, A.; Kéghélian, P.; Perez, A.; Flank, A.M.; Reny, E.; Cros, C.; Pouchard, M. *Phys. Rev. B* **2000**, *61*, 16550.

[S5] Beekman, M.; Sebastian, C.P.; Grin, Yu.; Nolas, G.S. J. Electr. Mater. 2009, 38, 1136.

[S6] Beekman, M.; Schnelle, W.; Borrmann, H.; Baitinger, M.; Grin, Yu.; Nolas, G.S.; *Phys. Rev. Lett.* **2010**, *104*, 018301.

[S7] Blöchl, P. E.; Phys. Rev. B 1994, 50, 17953.

[S8] Kresse, G. and Furthmüller J.; *Comput. Mater. Sci.* **1996**, *6*, 15; Kresse, G. and Joubert D.; *Phys. Rev. B* **1999**, *59*, 1758.

[S9] Ceperley, D. M. and Alder, B J; Phys. Rev. Lett. 1980, 45, 566.

[S10] Perdew, J. and Zunger, A.; Phys. Rev. B 1981, 23, 5048.

[S11] Monkhorst, H. J. and Pack, J. D.; Phys. Rev. B 1976, 13, 5188.