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Abstract

The effects of lattice relaxation on the deep levels due to substitutional impurities in semiconductors are investigated using an

extension of a previously developed formalism. Both ®rst- and second-neighbor relaxation are included in the formalism. Using

this method, deep level chemical trends and their trends with varying amounts of lattice relaxation are explored. For speci®c

impurities, molecular dynamics is used to calculate the lattice relaxation around an impurity, and its effects on the deep levels

are computed using a Green's function technique. The results of the application of this theory to several impurities in Si, GaAs,

and GaP are presented and compared with experiment and other theories. q 2000 Elsevier Science Ltd. All rights reserved.

PACS: 71.55. 2 i; 71.55.Eq; 71.55.Cn
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1. Introduction

The properties of a semiconductor are strongly in¯uenced

by defects which produce deep levels in the bandgap [1±9].

Unlike shallow levels [10], which are produced by the long-

ranged Coulomb potential of a defect and which primarily

control the magnitude and type of the conductivity, deep

levels are produced by the central-cell, atomic-like defect

potential and primarily control the charge-carrier lifetime

[1±9]. Shallow levels are well described by effective mass

theory [10]. Starting about two decades ago, many theories,

of varying degrees of sophistication and accuracy, have

been developed to describe deep levels [1±9]. Obtaining a

theoretical understanding of deep levels and other defect

properties continues to be of interest because of their poten-

tial technological importance [11±19].

In earlier work, we outlined a tight-binding-based form-

alism for calculating the effects of lattice relaxation on deep

levels [20±23] and used it to study nearest-neighbor relaxa-

tion effects on the deep levels and wavefunctions associated

with substitutional impurities. In this paper, we extend this

formalism to include second-neighbor relaxation effects.

Molecular dynamics is used to calculate the relaxation

around speci®c impurities and the relaxation effects on the

deep levels are computed using a tight-binding Green's

function technique. Using this theory, deep level chemical

trends and trends with varying amounts of lattice relaxation

are investigated in Si, GaAs, and GaP. Also, the deep levels

produced by several impurities in these materials are calcu-

lated and compared with experiment and other theories.

A defect in a semiconductor will interact with the host,

displacing the nearby atoms [25]. Since deep levels are

produced by the short-ranged part of the defect potential

[1±9], they are strongly affected by this distortion. First-

principles theories have been used to study these effects

[26±28]. Such techniques produce quantitatively reliable

results, but they require considerable computational effort.

On the other hand, tight-binding approaches are computa-

tionally comparatively simple and can easily be used to

study trends. The prediction of trends in deep levels was

one of the motivations for the present work.

Tight-binding theories have been previously used to study

lattice distortions [29] and their effects on deep levels [30±

32]. Some of these tight-binding theories can be
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unsatisfying because of the necessity to treat lattice relaxa-

tion phenomenologically. By contrast, our theory retains the

computational simplicity of tight-binding methods while

calculating lattice relaxation effects using molecular

dynamics, thus reducing the phenomenology required to

treat these effects.

Our approach is based on our generalization [20±23]

of the Hjalmarson et al. [9] deep level theory to include

lattice relaxation. We describe the host using the Vogl

et al. [33] bandstructure theory. The Hjalmarson et al.

theory, which in its original form neglected lattice

relaxation, has been widely used and its generalizations

have predicted trends in deep levels in many applica-

tions [34±56]. In our previous work [20±23] lattice

relaxation was incorporated into the Hjalmarson et al.

theory by treating the off-diagonal matrix elements of

the defect potential with a generalization of Harrison's

inverse bond-length-squared scaling rule [57,58]. The

relaxed impurity-to-host atom bond length was then

computed using molecular dynamics. In this previous

work, only the nearest-neighbors of the impurity were

allowed to relax.

The present paper extends this work to include the

effects of both ®rst- and second-neighbor relaxation.

This formalism retains the ability of the Hjalmarson et

al. theory to easily predict deep level chemical trends.

As in Ref. [9], it does so by computing levels as func-

tions of atomic energy dependent diagonal matrix

elements of the defect potential. Trends with varying

amounts of lattice relaxation can also be explored by

computing levels as functions of interatomic distance-

dependent off-diagonal matrix elements of this potential.

As in our earlier work, the magnitude of the relaxation

for speci®c impurities is computed using molecular

dynamics. This approach retains much of the simplicity

of the Hjalmarson et al. theory, while considerably

improving its quantitative accuracy.

An earlier extension of the Hjalmarson et al. theory

to include lattice relaxation was made by Talwar et al.

[30,31], who treated the off-diagonal matrix elements of

the defect potential using a generalization of the inverse

bond-length-squared scaling rule [57,58] along with a

total energy theory [59]. As discussed in Refs. [20±

23], the deep levels resulting from this approach fail

to improve upon the results of Ref. [9] in comparison

with experiment [30±31].

Singh and Madhukar [32] developed a tight-binding-

based deep level theory, in which lattice relaxation

effects are included, using a transfer-matrix technique.

Their calculations are in reasonable agreement with

experiment for the As antisite defect in GaAs and for

O on the anion site in GaAs12xPx. Li and Patterson

[60,61] have used a formalism similar to that described

here to successfully treat deep levels and other defect

properties in some of the II±VI semiconductor

materials.

2. Formalism

We describe the host with the Vogl et al. [33] sp3sp,

nearest-neighbor, semi-empirical, tight-binding Hamilto-

nian H0. This Hamiltonian has ®ve states per atom (four

sp3 states and an excited sp state) with 13 parameters,

which were obtained by ®ts to pseudopotential bandstruc-

tures [62]. The use of excited sp states enables a description

of the conduction band which is ¯exible enough to treat both

direct and indirect bandgaps. This model reproduces the

principal features of the valence and lower conduction

bands of several materials.

We consider deep levels produced by neutral, sp3 bonded,

substitutional impurities in zinc-blende and diamond struc-

ture hosts. The point group for such impurities is Td. The

deep levels are thus either of the A1-symmetric (s-like) or the

T2-symmetric (p-like) type. Following previous work, the

long-ranged Coulomb potential is neglected, and the deep

levels are produced by a short-ranged, central-cell potential

[9]. Our formalism could be generalized to include more

complicated defects or charge state effects [34±56,60,61].

Our technique is applicable for a general distortion of the

host atoms. However, we consider only Td symmetry-

conserving, ªbreathing-modeº distortions, which are

thought to dominate for substitutional impurities [26±

28,63±66]. We note that Li and Patterson [60,61] have

successfully applied their formalism, which is similar to

the present method, to treat lattice relaxation effects on

deep levels due to charged impurities, non-ideal vacancies,

and interstitial impurities.

2.1. Deep level theory

The Koster±Slater [67] theory is convenient for calculat-

ing the energies E produced in the bandgap by a short-

ranged defect potential V. In this method, these energies

are obtained by solving SchroÈdinger's equation in the form

D�E� � det�1 2 G0�E�V� � 0; �1�

where G0�E� � �E 2 H0�21 is the host Green's function.

The advantage of Eq. (1) is that it needs to be solved only

in the subspace of the defect potential. In this paper, 17

atoms are allowed to relax: the impurity, four nearest-neigh-

bors, and 12 second-neighbors.

Following previous work [9,20±23,34±56], we include

only four orbitals per atom (sp3 states) in V and neglect

the effects of the sp states on the defect potential. Thus,

Eq. (1) is a 68 £ 68 determinant. For breathing-mode distor-

tions, Eq. (1) factors into the product of four 17 £ 17 deter-

minants; one gives the A1 states and three give the T2 states

(for example see Ref. [24]).

For an impurity on the anion site (assumed to be at the

origin) in a zinc-blende crystal, the defect potential, includ-

ing coupling to the ®rst-and second-neighbors, has the form
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[24]

V �
X

i

�jia~0lUikia~0j�1
X

i

X
~d

�jia~0laikic~dj1 H:c:�

1
X

i

X
~d;~d 0
�jic~dlbikia~d

0j1 H:c:�; �2�

where the sum on i is over the A1 and T2 states, a and c refer

to anion and cation, ~0 is the cell at the origin, the sum on ~d is

over the four nearest-neighbors, the sum on ~d 0 is over the 12

second-neighbors, the Ui are the diagonal matrix elements at

the impurity site, the a i are the matrix elements coupling the

impurity with its nearest-neighbor cations, the b i are the

matrix elements coupling these cations with the second-

neighbor anions, and H.c. is the Hermitian conjugate. For

an impurity on the cation site, the labels a and c are inter-

changed. We have also done some calculations including

matrix elements coupling the impurity directly to its

second-neighbors [24]. We have found that these matrix

elements are very small in comparison with a i and b i, so

they are neglected here. The a i and b i depend on intera-

tomic distances and are thus measures of the lattice relaxa-

tion around the impurity.

The combination of Eqs. (1) and (2) may be viewed as an

implicit equation for the deep level E as a function of the

parameters Ui, a i and b i. That is, Eq. (2) can be used to

numerically solve (Eq. (1) to obtain E � E�Ui;ai;bi�: By

doing this, the chemical trends in the deep levels (variation

with Ui) and their trends with varying amounts of relaxation

(variation with a i and b i) can be explored.

In order to calculate the deep levels produced by a parti-

cular impurity, Ui, a i, and b i must be speci®ed. We use the

empirical rule [9] that the Ui are proportional to the atomic-

energy difference between the impurity and the replaced

host atom. That is

Ui � gi�ei
I 2 ei

H�; �3�
where ei

I and ei
H are the i-symmetric atomic energies [57,58]

for the impurity and the host atoms and g i is a constant. In

Ref. [9], it is shown that gA1
� 0:8 and gT2

� 0:6: The use of

Eq. (3) along with the numerical solutions for E�Ui;ai;bi�
gives the chemical trends. To model a i and b i, we use a

generalization of Harrison's inverse-bond-length-squared

scaling rule [57,58], which gives [24]

ai � 2Ci��dI�22 2 �dH�22� �4�
and

bi � 2Ci��dII�22 2 �dH�22�; �5�
where dI is the impurity atom-to-host atom bond length, dII is

the ®rst- to second-neighbor bond length, dH is the host bond

length, and Ci is a material independent constant. We ®nd

[24] that, for the bandstructures of Ref. [33], CA1
�

10:5 eV� �A�2 and CT2
� 23:0 eV� �A�2: The use of Eqs. (4)

and (5) along with E�Ui;ai;bi� will give the lattice relaxa-

tion trends.

Clearly, a i and b i are measures of the effects of ®rst- and

second-neighbor relaxation. From Eqs. (4) and (5) and the

signs of the Ci, it can be seen that for outward ®rst-neighbor

relaxation �dI $ dH�;aA1
�aT2
� is positive (negative), while

for inward relaxation �dI # dH�aA1
�aT2
� is negative (posi-

tive). Similar statements also hold regarding b i with second-

neighbor outward or inward relaxation. To calculate a i and

b i for speci®c impurities, we use experimental values

[57,58] for dH and compute dI and dII by the molecular

dynamics scheme we now describe.

2.2. Forces on atoms: molecular dynamics

For an ideal substitutional impurity, all host atoms remain

in their perfect-crystal positions. When the deep level

problem is treated more realistically, if one starts with the

nearby atoms in their equilibrium positions, they will

experience a net force, which will cause the lattice to

relax to a new con®guration where that force is zero. In

Refs. [20±23], only the nearest-neighbor lattice relaxation

was considered and the force acting on each of the four

nearest-neighbor host atoms was assumed, for ªbreathing

modeº distortions, to be along the impurity to ®rst-neighbor

bond.

In the present case, where both ®rst- and second-neighbor

relaxation are included, the net force acting on a nearest-

neighbor atom is more complicated. For breathing mode

distortions, this force is the vector sum of four forces; one

acting along the impurity to ®rst-neighbor bond and three

acting along the three bonds from the ®rst- to the second-

neighbors. The bond angles also change during relaxation,

so the vector sum must be done carefully at each time step of

the relaxation. On the other hand, the total force acting on

each of the 12 second-neighbors is, in this approximation,

directed along a ®rst- to second-neighbor bond. These forces

can thus be treated in a manner analogous to our treatment of

®rst-neighbor forces in Refs. [20±23]. More details of how

we account for the vector nature of the forces may be found

in Ref. [24].

The total force on any one of the ®rst- or second-neigh-

bors can be divided into repulsive and attractive parts. Thus,

for example, the component along the x direction can be

written

Fx � Fr
x 1 Fa

x : �6�

The origin of the repulsive force, Fr
x; is the repulsion

between electrons in overlapping states. We compute it

from a pair potential based on Harrison's overlap interaction

[57,58], which gives

Fr
x � 2A=d5

; �7�
where d is either dI or dII, depending on whether a ®rst- or

second-neighbor is being considered, and A is a constant

determined by requiring the total force to vanish when the

impurity is replaced by a host atom �dI � dII � dH�: We ®nd
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that A� 199.0, 146.0 and 152.0 eV(AÊ )4 for Si, GaAs, and

GaP, respectively.

We compute the attractive force, Fa
x ; which originates

from the occupied one electron levels, directly from the

electronic structure in the presence of the impurity by

using the Hellmann±Feynman theorem [68±72]. For exam-

ple, the x component of this force is computed from the

derivative of the total quantum-mechanical energy, Etot, as

Fa
x � 2

2Etot

2x
� 2

2

2x

ZEF

2 1
Er�E� dE; �8�

where EF is the Fermi energy and r�E� �

2�1=p� Im Tr G�E� is the density of states. Here, G(E) is

the Green's function, in the presence of the impurity,

which can be found from Dyson's equation

G�E� � G0�E�1 G0�E�VG�E� � �1 2 G0�E�V�21G0�E�:
�9�

By combining Eq. (8) with Eq. (9) and its x derivative,

and by using the invariance of the trace and performing a

partial integration, Fa
x can be written as

Fa
x � 2

1

p
Im Tr

ZEF

2 1
G
2V

2x
dE: �10�

(10)

Using this formalism and beginning with the ®rst- and

second-neighbor host atoms in their perfect crystal posi-

tions, one can calculate the motion of these atoms for a

small time interval, Dt, using Newton's Second Law along

with standard molecular dynamics methods [73±77]. In this

manner, new atomic positions, new bond lengths dI and dII, a

new defect potential V, and new forces can be computed.

This process can be repeated for successive intervals Dt until

the net force acting on each atom approaches zero. In this

manner, one can determine dI, dII and V for the relaxed

lattice. Then, the deep levels can be obtained from Eqs.

(1)±(5).

3. Results for trends

We have used the formalism just described to investigate

the effects of ®rst- and second-neighbor relaxation on the

deep levels produced by substitutional impurities in Si,

GaAs, GaP, AlP, AlAs, GaSb, and InP. Here, we present

our results for Si, GaAs, and GaP. The results for the other

materials are qualitatively similar to those presented here

[24]. Interested readers are referred to Ref. [24] for these
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Table 1

Deep energy levels of A1 symmetry, bond lengths, and bond length changes for various impurities in Si, GaAs and GaP. All energies are in

electron volts, measured from the top of the valence band. The bond lengths are in AÊ . Dd � dI 2 dH; Dd 0 � dII 2 dH

System Present theory Experiment Hjalmarson [9] dI Dd dII Dd 0

Si:S 0.64 0.85a 0.58 2.23 20.12 2.41 0.06

Si:Se 0.84 0.86a 0.65 2.03 20.32 2.48 0.13

Si:Te 1.04 1.01a 1.12 2.60 0.25 2.28 20.09

GaAs:O 1.16 0.75b 1.26 2.73 0.28 2.36 20.11

GaAs:AsGa 0.74 0.75b 0.79 2.39 20.06 2.47 0.02

GaP:N 2.25 2.34c 2.10 2.15 20.21 2.41 0.05

GaP:O 1.70 1.46c 1.85 2.78 0.42 2.23 20.13

GaP:PGa 1.09 1.10d 1.03 2.28 20.08 2.40 0.04

GaP:Ge 1.95 2.16e 1.85 2.24 20.12 2.45 0.06

a Ref. [1].
b Ref. [78].
c Ref. [79].
d Quoted in Refs. [80,81].
e Ref. [82].

Fig. 1. D(E) as a function of energy E in the bandgap for A1-

symmetric levels due to Si:Se �U � 26:5 eV�: The different curves

indicate the values of matrix elements a and b . The deep level in

each case occurs when D(E)� 0.0.



results. We have found [24] that lattice relaxation effects for

impurities in III±V compounds and Group IV materials are

much more important for A1 levels than for T2 levels. Thus,

only results for A1 levels are discussed here. In what follows,

UA1
;aA1

; and bA1
are denoted as U, a , and b and the zero of

energy E is taken as the top of the valence band. Our mole-

cular dynamics results for the deep levels and equilibrium

bond lengths for several impurities in Si, GaAs, and GaP are

summarized in Table 1 and are discussed in detail below.

3.1. Trends with ®rst- and second-neighbor relaxation

Typical results, illustrating trends in the deep levels with

varying amounts of relaxation, are shown in Fig. 1, in which

D(E) (Eq. (1)) is plotted versus E in the bandgap for various

values of a and b for the A1-symmetric level produced by

Se in Si. In this case, Eq. (3) gives U�26.5 eV. There are

three groups of curves containing three members each. Each

group corresponds to a different value of the ®rst-neighbor

matrix element a . From left to right, the groups represent

a � 0.3, 0.0, and 20.3 eV, respectively, corresponding to

dI=dH � 1:09; 1.00 and 0.93. Within each group, the curves

correspond to different values of the second-nearest neigh-

bor matrix element b . These are b �20.3 (dashed curve),

0.0 (solid curve), and 0.3 eV (dotted curve), corresponding

to dII=dH � 0:93; 1.00, and 1.09, respectively. The intersec-

tions of these curves with D(E)� 0.0 give the deep levels in

the bandgap for these values of a and b . It can be seen that,

as a becomes more negative (larger inward ®rst-neighbor

relaxation), the deep level moves towards the conduction

band, while as it becomes more positive (larger outward

nearest-neighbor relaxation), it moves towards the valence

band. Thus, these results show that inward nearest-neighbor

relaxation �dH $ dI� about an impurity moves the A1 deep

level towards the conduction band, while outward relaxation

�dH # dI� moves it towards the valance band, in agreement

with previous results [20±23].

The opposite trend as a function of b can also be seen in

Fig. 1; the deep level moves towards the conduction band as

b becomes more positive (larger outward second-neighbor

relaxation, dH # dII�) and towards the valence band as b
becomes more negative (larger inward relaxation dH $ dII).

Clearly, from Fig. 1, the effects of second-neighbor relaxa-

tion on the deep level are much smaller than ®rst-neighbor

effects, even if the ®rst- and second-neighbor matrix

elements are of similar magnitude. We have found that

this result and the trends shown in Fig. 1 hold qualitatively

for all impurities and hosts we have considered.

To further illustrate the small effect of second-neighbor

relaxation on deep levels, consider the A1-symmetric level

produced by O substitutional for P in GaP. In this case, Eq.

(3) gives U�211.9 eV. From Table 1, the molecular

dynamics results yield dI � 2:78 AÊ and dII � 2:23 �A:

Since dH � 2:36 �A; this corresponds to a very large outward

®rst-neighbor relaxation of about 17% and to a large inward

second-neighbor relaxation of 5%. These are (by far!) the

largest percentage relaxations of any case we have studied.

As was discussed in Refs. [20±24], GaP:O is anomalous in

several ways, so this large relaxation is not surprising. Using

these results in Eqs. (4) and (5) gives a � 0.53 eV and

b �20.21 eV. This yields a deep level at 1.70 eV (see

Table 1), still far removed from the experimental value of

1.46 eV [80,81], but closer to that value than the 1.85 eV

predicted by the Hjalmarson et al. [9] theory.

Fig. 2 shows the results for D(E) versus E for GaP:O. The

results for both b �20.21 (dashed curve) and b � 0.0 eV
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Fig. 2. D(E) as a function of energy E in the bandgap for GaP:O for

b �20.21 and 0.0 eV (U�211.9 eV and a � 0.53 eV). The deep

level in the two cases occurs when D(E)� 0.0.

Fig. 3. D(E) as a function of energy E in the bandgap for Si:Se, Si:S,

and Si:Te. The deep level in each case occurs when D(E)� 0.0.



(solid curve) are shown. Using the latter b value corre-

sponds to neglect of second-neighbor relaxation. The deep

levels are again determined by the intersection of these

curves with D(E)� 0.0. From the ®gure, it is clear that

the inclusion of the second-neighbor relaxation shifts the

deep level by a very small amount. Numerically, one obtains

1.71 eV for b � 0.0 eV (no second-neighbor relaxation) and

1.70 eV (Table 1) for b �20.21 eV. Thus, even though the

second-neighbors of O have relaxed considerably and the

resulting second-neighbor matrix element b is not small,

the shift that this induces in the deep level is still very small.

We have found this to be true for all the impurities and hosts

we have considered.

An example of the chemical trends obtained using this

theory is displayed in Fig. 3, which shows our results for

D(E) versus E for the A1-symmetric levels produced by

Si:Te (solid curve), Si:Se (dashed curve), and Si:S (dotted

curve). The values of U from Eq. (3) are 23.5 eV (Si:Te),

26.5 eV (Si:Se), and 27.4 eV (Si:S). The molecular

dynamics results are (Table 1) dI � 2:60; 2.03, and 2.23 AÊ

and dII � 2:28 eV, 2.48 eV, and 2.41 AÊ for Si:Te, Si:Se, and

Si:S, respectively. Using these results in Eqs. (4) and (5)

gives a � 0.35 eV, 20.65 eV, and 20.21 eV and

b �20.12 eV, 0.19 eV, and 0.09 eV for the same cases.

In Fig. 3, the deep levels are again found where

D(E)� 0.0. This ®gure predicts that, as the relative electro-

negativity between the impurity and the replaced host atom

increases, the level moves deeper into the bandgap. That is,

as the atomic energy difference between the impurity and

the host atom increases (as U becomes increasingly nega-

tive), the level moves away from the conduction band edge.

From Fig. 3, the predicted level ordering, from shallowest to

deepest, is Si:Te, Si:Se, and Si:S in order of increasing uUu.
This is in qualitative agreement with the original predictions

of Hjalmarson et al. [9].

We have found qualitatively similar chemical and ®rst-

and second-neighbor lattice relaxation trends for all the

cases that we have considered. Thus, we conclude that

lattice relaxation effects do not alter the qualitative, ªdefect

moleculeº picture of deep levels, developed by Hjalmarson

et al. [9] and others [1]. In this picture, electronegativity

differences are the primary mechanisms responsible for

the ordering of deep levels. Numerically, from Fig. 3, one

obtains (Table 1) deep levels at 0.65 eV, 0.84 eV, and

1.04 eV for Si:S, Si:Se, and Si:Te, respectively. These are

in very good agreement with the data quoted in Ref. [1].

3.2. Chemical trends: trends with varying amounts of lattice

relaxation

Fig. 4 shows results for the A1-symmetric levels produced

by substitutional impurities in GaAs. The results for impu-

rities on the anion and cation sites are shown in Fig. 4a and

b, respectively. In both part ®gures, the deep level (E)

dependence on U is shown for various values of the ®rst-

neighbor matrix element a . Since, as was just illustrated, the
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Fig. 4. Deep levels versus U for A1-symmetric states in GaAs for

b � 0.0 and for a � 1.0 (dashed curves), 0.5 (dotted curves), 0.0

(solid curves), -0.5 (chained curves), and -1.0 eV (long dashed-short

dashed curves). These correspond to dI=dH � 1:53; 1.20, 1.00, 0.90,

and 0.81. (a) As-site impurities. (b) Ga-site impurities.



second-neighbor matrix element b has only a small effect on

the deep levels, it has been set to zero in Fig. 4a and b. In this

®gure, the a � 1.0 eV, 0.5 eV, 0.0 eV, 20.5 eV, and

21.0 eV results are shown, respectively, as dashed, dotted,

solid, dotted-dashed, and chained curves. These correspond

to bond length ratios of dI=dH � 1:53; 1.20, 1.00, 0.90, and

0.81, respectively. The vertical scale is the deep level energy

in the bandgap. The horizontal scale and the labeled impu-

rities at the top of the ®gures correspond to the value of U

calculated from atomic energy differences [9] (Eq. (3)). Simi-

lar results for Si and GaP were discussed in Ref. [20±23]. The

results for the A1-symmetric levels in AlP, AlAs, GaSb, and

InP are qualitatively similar to those presented here [24].

The deep levels for a particular impurity for a particular a
value can be obtained from Fig. 4a and b by ®nding the

intersection with the curve for that a of a vertical line

drawn from the label for that impurity at the top of the

®gure. If there is no intersection, no A1 level is predicted

in the bandgap for that a .

Inspection of Fig. 4a and b reveals the qualitative effects

of nearest-neighbor lattice relaxation on A1 levels. Chemical

trends (variation in E for ®xed a as U varies) and trends for

varying amounts of relaxation (variation in E for ®xed U as

a varies) can both be extracted from these ®gures. For

example, the a ± 0 curves have similar chemical trends

as those of the a � 0 (no relaxation) curve (which is the

same as the results of Ref. [9]). Also, the deep levels, for

®xed U, are shifted upward in the bandgap as a becomes

increasingly negative (increasing magnitude of inward

relaxation, dH $ dI) and downward as a becomes more

positive (increasing magnitude of outward relaxation

dH # dI), in agreement with the trend discussed above.

This trend can be illustrated by discussing a few cases in

detail. For example, consider the O impurity substitutional

for As in GaAs. From Fig. 4a, this impurity is predicted to

have a deep level which changes considerably as a is chan-

ged and which moves towards the conduction band for

increasing inward relaxation. It is predicted to change

from about 1.1 eV for a � 1.0 eV (outward relaxation;

dI � 1:53dH), to about 1.4 eV for a � 0.0 (no relaxation;

dI � dH), to just above the conduction band edge for

a �21.0 eV (inward relaxation; dI � 0:81dH). Our mole-

cular dynamics results (Table 1) predict the O deep level at
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Fig. 5. Deep levels of A1 symmetry produced by N (dotted curve)

and O (dashed curve) substitutional for P in GaP. The abscissa is

dI=dH and the ordinate is the bandgap energy. The quantity b has

been set to zero.

Fig. 6. Time dependence of the magnitude of the total force (solid

curves) along an impurity atom±host atom bond and of the bond

length (dashed curves) for: (a) substitutional S in Si; and (b) O

substitutional for P in GaP.



1.16 eV, which is closer to the experimental value [78] than

that predicted by the Hjalmarson et al. [9] theory.

Similar trends can be obtained for Ga-site impurities in

GaAs by examination of Fig. 4b. For example, consider the

As on Ga antisite defect ªimpurityº. It can be seen that a

large variation in the associated deep level is predicted,

depending on the amount of relaxation. The deep level

changes from about 0.25 eV for a � 1.0 eV (outward

relaxation; dI � 1:53dH), to about 0.75 eV for a � 0.0 eV

(no relaxation; dI � dH), to about 1.25 eV for a �21.0 eV

(inward relaxation; dI � 0:81dH�: Our molecular dynamics

results (Table 1) predict this level at 0.74 eV, in fortuitously

good agreement with the experimental value of 0.75 eV

[78].

The type of trends just discussed are also illustrated in a

different way in Fig. 5, which shows results for the A1 levels

produced by N and O on the P site in GaP. In this case, the

second-neighbor matrix element b has also been set to zero.

In this ®gure, the ordinate is the energy in the bandgap and

the abscissa is dI=dH: The curves show the dependence of the

deep levels on this ratio. As can be seen, this dependence is

nearly linear. Further, these levels move towards the

conduction band for inward relaxation and towards the

valence band for outward relaxation, in agreement with

the above discussion.

4. Molecular dynamics results

4.1. Time dependence of force and bond length

As a typical illustration of the molecular dynamics

results, in Fig. 6 we show the time dependence of the magni-

tude of the total force along an impurity atom-to-host atom

bond (solid curves) and of dI (dashed curves) for Si:S (Fig.

6a) and GaP:O (O substitutional for P) (Fig. 6b). These are

plotted versus tp � t=�Dt�; where Dt � 0:35 £ 10214 s is the

time step we have used in the molecular dynamics calcula-

tions. This value of Dt was obtained by trial and error. We

have found that, while the best choice depends on the parti-

cular case, Dt is always of this order of magnitude. A smaller

Dt uses considerably more computer time to achieve similar

results and a larger value can cause an ªovershootº of the

®nal equilibrium position and an oscillatory behavior of dI

versus tp.

Fig. 6 reveals the details of the dynamics of the lattice

relaxation, and shows several interesting features. In both

Fig. 6a and b, after only 25 time steps or ,0.09 ps, the

force approaches zero. Also, as the nearest-neighbor host

atoms approach their new equilibrium positions, they

move a considerable distance. For Si:S, they move inward

by about 0.12 AÊ , or ,5% of the 2.35 AÊ Si±Si bond

length. For GaP:O, they move outward by about 0.42 AÊ ,

or ,17% of the 2.36 AÊ Ga±P bond length. The results for

Si:S are in qualitative agreement with a covalent radius

model [20±23]. The large relaxation for GaP:O is consis-

tent with the anomalous behavior of O in this material

[20±23,63,64].

It is interesting that, as a function of time, the magnitude

of the force in GaP:O (Fig. 6b) ®rst increases to a maximum

and then decreases to zero, rather than smoothly decreasing

to zero as for Si:S (Fig. 6a). This can be understood by

noting that lattice relaxation is a competition between attrac-

tive and repulsive forces. In the ®nal results of this competi-

tion, the net force approaches zero and the atoms approach

new equilibrium positions. However, during this process,

the net force at any time step may be either larger or smaller

than that at the previous time step.

We note that self-consistent Green's function approaches

[26±28] obtain the same order of magnitude for the forces

and similar trends for forces versus time, as we illustrate in

Fig. 6.

4.2. Comparison with experiment and other theories

Results obtained using our formalism to compute A1 levels

produced by several impurities in Si, GaAs, and GaP are

shown in Table 1. Also shown are the experimental deep

levels [78±82] and the predictions of the Hjalmarson et al.

[9] theory. The last four columns give our results for dI,Dd �
dI 2 dH; dII; and Dd 0 � dII 2 dH: An inward nearest-neigh-

bor relaxation is clearly predicted for all the cases considered,

except for Si:Te, GaAs:O, and GaP:O. Except for the latter

two cases, all of the results for dI shown in Table 1 are in

qualitative agreement with a covalent radius model [20±23].

Where comparisons are possible, our results for dI are in

reasonable agreement with those of Refs. [30,31].

In all cases considered in Table 1, our deep level predic-

tions considerably improve upon those of Ref. [9] in

comparison with experiment. In some cases, there is very

good quantitative agreement with the data. The remaining

discrepancies between theory and experiment might be due

to inaccuracies in the host bandstructures and/or to charge

state effects.

Self-consistent pseudopotential Green's function meth-

ods [26±28] have been used to accurately predict deep

levels and relaxation distances for some impurities in

some materials. Where comparisons are possible, our results

compare quite favorably, qualitatively and quantitatively,

with results from this more sophisticated theory. For exam-

ple, Schef̄ er et al. [26±28] have used this method to study

the effects of lattice relaxation on the deep level produced by

Ge on the Ga site in GaP. They predict that the nearest-

neighbor P atoms relax towards the GeGa center, and that

an A1 level is produced at 2.26 eV above the valence band,

in reasonable agreement with the experimental value of

2.16 eV [82]. They also predict an impurity bond length of

dI � 2:28 �A; which is reduced from the GaP bond length

(2.36 AÊ ) by about 3.5%.

As can be seen in Table 1, our results are in reasonable

agreement with all of these predictions. Our predicted deep

level for GaP:Ge is 1.95 eV, also in reasonable agreement
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with experiment [82], and our predicted bond length is dI �
2:24 �A; a 5% reduction in comparison with the host bond

length. The order of magnitude of the initial forces due to

substitutional impurities, and the trends of the force versus

relaxation distance obtained by our theory are also in agree-

ment with those obtained by self-consistent pseudopotential

Green's function methods [65,66].

5. Summary and conclusions

We have investigated the effects of lattice relaxation on

the A1-symmetric deep levels in several semiconductors

using an extension of a previously developed formalism.

Our method is a generalization of the Hjalmarson et al. [9]

theory. For simplicity, only symmetry-conserving breathing

mode relaxations have been considered, although our

method could be generalized to treat more complicated

cases. Both ®rst- and second-neighbor lattice-relaxation

are included by representing the off-diagonal matrix

elements of the defect potential by parameters a and b ,

which depend on the host and host-impurity bond lengths.

To determine these as functions of the bond lengths, we

have used Harrison's inverse-bond-length squared-scaling

rule [57,58]. By computing deep levels as functions of a
and b , the effects of varying amounts of lattice relaxation

have been explored. We ®nd that second-neighbor relaxa-

tion affects the deep levels by only a small amount in

comparison to ®rst-neighbor effects.

Molecular dynamics has been used to calculate the ®rst-

and second-neighbor relaxation around particular impuri-

ties. That is, this method has been used to determine the

relaxed bond lengths which enter the off-diagonal quantities

a and b . The attractive part of the force is computed

directly from the electronic structure, using the Hell-

mann±Feynman theorem [68±72]. The repulsive part is

obtained from a pair potential based on Harrison's overlap

interaction [57,58].

Since the Hjalmarson et al. [9] theory and its generaliza-

tions have been successful both in predicting the chemical

trends of deep levels and in making semiquantitative predic-

tions for such levels [9,34±56], we believe that our

predicted trends should be reliable. Further, our numerical

calculations of deep levels including such effects are in

reasonable agreement with experiment and considerably

improve the quantitative accuracy of the Hjalmarson et al.

theory. Some of these predictions are also in reasonable

agreement with those obtained from ®rst-principles theories.

We hope that these predictions will be useful in assisting in

the identi®cation of deep levels.

We note that our results depend on a generalization of the

inverse-bond-length squared scaling rule [57,58] for a and

b (Eqs. (4) and (5)) and on our assumption of a repulsive

force obtained from Harrison's overlap interaction [57,58]

(Eq. (7)). However, our general formalism could also be

utilized with other reasonable assumptions for these quan-

tities. To test the sensitivity of our results to these assump-

tions, we have repeated some of our calculations assuming

exponential dependencies [83] of these quantities on dI and

dII. The results obtained in this manner for these bond

lengths and for the corresponding deep levels differ by

less than 1% from those in Table 1.
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